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From	the	Preface	to	the	First	Printing

A	 great	 discovery	 solves	 a	 great	 problem	 but	 there	 is	 a	 grain	 of	 discovery	 in	 the	 solution	 of	 any
problem.	 Your	 problem	 may	 be	 modest;	 but	 if	 it	 challenges	 your	 curiosity	 and	 brings	 into	 play	 your
inventive	faculties,	and	if	you	solve	it	by	your	own	means,	you	may	experience	the	tension	and	enjoy	the
triumph	of	discovery.	Such	experiences	at	a	susceptible	age	may	create	a	taste	for	mental	work	and	leave
their	imprint	on	mind	and	character	for	a	lifetime.

Thus,	 a	 teacher	of	mathematics	has	 a	great	 opportunity.	 If	 he	 fills	 his	 allotted	 time	with	drilling	his
students	in	routine	operations	he	kills	their	interest,	hampers	their	intellectual	development,	and	misuses
his	opportunity.	But	if	he	challenges	the	curiosity	of	his	students	by	setting	them	problems	proportionate	to
their	knowledge,	and	helps	them	to	solve	their	problems	with	stimulating	questions,	he	may	give	them	a
taste	for,	and	some	means	of,	independent	thinking.

Also	a	student	whose	college	curriculum	includes	some	mathematics	has	a	singular	opportunity.	This
opportunity	 is	 lost,	of	course,	 if	he	regards	mathematics	as	a	subject	 in	which	he	has	 to	earn	so	and	so
much	credit	and	which	he	should	forget	after	the	final	examination	as	quickly	as	possible.	The	opportunity
may	be	 lost	even	 if	 the	 student	has	 some	natural	 talent	 for	mathematics	because	he,	as	everybody	else,
must	 discover	 his	 talents	 and	 tastes;	 he	 cannot	 know	 that	 he	 likes	 raspberry	 pie	 if	 he	 has	 never	 tasted
raspberry	pie.	He	may	manage	to	find	out,	however,	that	a	mathematics	problem	may	be	as	much	fun	as	a
crossword	puzzle,	or	that	vigorous	mental	work	may	be	an	exercise	as	desirable	as	a	fast	game	of	tennis.
Having	tasted	the	pleasure	in	mathematics	he	will	not	forget	it	easily	and	then	there	is	a	good	chance	that
mathematics	will	become	something	for	him:	a	hobby,	or	a	tool	of	his	profession,	or	his	profession,	or	a
great	ambition.

The	author	remembers	the	time	when	he	was	a	student	himself,	a	somewhat	ambitious	student,	eager	to
understand	 a	 little	 mathematics	 and	 physics.	 He	 listened	 to	 lectures,	 read	 books,	 tried	 to	 take	 in	 the
solutions	 and	 facts	 presented,	 but	 there	 was	 a	 question	 that	 disturbed	 him	 again	 and	 again:	 “Yes,	 the
solution	seems	to	work,	it	appears	to	be	correct;	but	how	is	it	possible	to	invent	such	a	solution?	Yes,	this
experiment	seems	to	work,	this	appears	to	be	a	fact;	but	how	can	people	discover	such	facts?	And	how
could	 I	 invent	 or	 discover	 such	 things	 by	 myself?”	 Today	 the	 author	 is	 teaching	 mathematics	 in	 a
university;	he	thinks	or	hopes	that	some	of	his	more	eager	students	ask	similar	questions	and	he	tries	to
satisfy	 their	 curiosity.	 Trying	 to	 understand	 not	 only	 the	 solution	 of	 this	 or	 that	 problem	 but	 also	 the
motives	and	procedures	of	the	solution,	and	trying	to	explain	these	motives	and	procedures	to	others,	he
was	finally	led	to	write	the	present	book.	He	hopes	that	it	will	be	useful	to	teachers	who	wish	to	develop
their	students’	ability	to	solve	problems,	and	to	students	who	are	keen	on	developing	their	own	abilities.

Although	 the	 present	 book	 pays	 special	 attention	 to	 the	 requirements	 of	 students	 and	 teachers	 of
mathematics,	it	should	interest	anybody	concerned	with	the	ways	and	means	of	invention	and	discovery.
Such	interest	may	be	more	widespread	than	one	would	assume	without	reflection.	The	space	devoted	by
popular	newspapers	 and	magazines	 to	 crossword	puzzles	 and	other	 riddles	 seems	 to	 show	 that	 people
spend	 some	 time	 in	 solving	unpractical	 problems.	Behind	 the	 desire	 to	 solve	 this	 or	 that	 problem	 that
confers	 no	material	 advantage,	 there	 may	 be	 a	 deeper	 curiosity,	 a	 desire	 to	 understand	 the	 ways	 and
means,	the	motives	and	procedures,	of	solution.

The	following	pages	are	written	somewhat	concisely,	but	as	simply	as	possible,	and	are	based	on	a
long	and	serious	study	of	methods	of	solution.	This	sort	of	study,	called	heuristic	by	some	writers,	is	not
in	fashion	nowadays	but	has	a	long	past	and,	perhaps,	some	future.

Studying	the	methods	of	solving	problems,	we	perceive	another	face	of	mathematics.	Yes,	mathematics
has	two	faces;	it	is	the	rigorous	science	of	Euclid	but	it	is	also	something	else.	Mathematics	presented	in
the	Euclidean	way	appears	as	a	systematic,	deductive	science;	but	mathematics	in	the	making	appears	as



an	experimental,	inductive	science.	Both	aspects	are	as	old	as	the	science	of	mathematics	itself.	But	the
second	aspect	 is	new	in	one	respect;	mathematics	“in	statu	nascendi,”	 in	 the	process	of	being	invented,
has	never	before	been	presented	 in	quite	 this	manner	 to	 the	student,	or	 to	 the	 teacher	himself,	or	 to	 the
general	public.

The	 subject	 of	 heuristic	 has	 manifold	 connections;	 mathematicians,	 logicians,	 psychologists,
educationalists,	even	philosophers	may	claim	various	parts	of	 it	 as	belonging	 to	 their	 special	domains.
The	author,	well	aware	of	the	possibility	of	criticism	from	opposite	quarters	and	keenly	conscious	of	his
limitations,	 has	 one	 claim	 to	 make:	 he	 has	 some	 experience	 in	 solving	 problems	 and	 in	 teaching
mathematics	on	various	levels.

The	subject	 is	more	 fully	dealt	with	 in	a	more	extensive	book	by	 the	author	which	 is	on	 the	way	 to
completion.

Stanford	University,	August	1,	1944



From	the	Preface	to	the	Seventh	Printing

I	am	glad	to	say	that	I	have	now	succeeded	in	fulfilling,	at	least	in	part,	a	promise	given	in	the	preface
to	the	first	printing:	The	two	volumes	Induction	and	Analogy	in	Mathematics	and	Patterns	of	Plausible
Inference	which	constitute	my	recent	work	Mathematics	and	Plausible	Reasoning	 continue	 the	 line	of
thinking	begun	in	How	to	Solve	It.

Zurich,	August	30,	1954



Preface	to	the	Second	Edition

The	present	second	edition	adds,	besides	a	 few	minor	 improvements,	a	new	fourth	part,	“Problems,
Hints,	Solutions.”

As	 this	 edition	 was	 being	 prepared	 for	 print,	 a	 study	 appeared	 (Educational	 Testing	 Service,
Princeton,	N.J.;	cf.	Time,	June	18,	1956)	which	seems	to	have	formulated	a	few	pertinent	observations—
they	are	not	new	to	the	people	in	the	know,	but	it	was	high	time	to	formulate	them	for	the	general	public
—:	“.	.	.	mathematics	has	the	dubious	honor	of	being	the	least	popular	subject	in	the	curriculum	.	.	.	Future
teachers	 pass	 through	 the	 elementary	 schools	 learning	 to	 detest	 mathematics	 .	 .	 .	 They	 return	 to	 the
elementary	school	to	teach	a	new	generation	to	detest	it.”

I	 hope	 that	 the	present	 edition,	designed	 for	wider	diffusion,	will	 convince	 some	of	 its	 readers	 that
mathematics,	besides	being	a	necessary	avenue	to	engineering	jobs	and	scientific	knowledge,	may	be	fun
and	may	also	open	up	a	vista	of	mental	activity	on	the	highest	level.

Zurich,	June	30,	1956
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HOW	TO	SOLVE	IT
	



UNDERSTANDING	THE	PROBLEM

First.

You	have	to	understand	the	problem.
What	 is	 the	 unknown?	What	 are	 the	 data?	What	 is	 the	 condition?	 Is	 it	 possible	 to	 satisfy	 the	 condition?	 Is	 the	 condition	 sufficient	 to
determine	the	unknown?	Or	is	it	insufficient?	Or	redundant?	Or	contradictory?
Draw	a	figure.	Introduce	suitable	notation.
Separate	the	various	parts	of	the	condition.	Can	you	write	them	down?
	



DEVISING	A	PLAN

Second.

Find	the	connection	between	the	data	and	the	unknown.
You	may	be	obliged	to	consider	auxiliary	problems	if	an	immediate	connection	cannot	be	found.

You	should	obtain	eventually	a	plan	of	the	solution.
Have	you	seen	it	before?	Or	have	you	seen	the	same	problem	in	a	slightly	different	form?
Do	you	know	a	related	problem?	Do	you	know	a	theorem	that	could	be	useful?
Look	at	the	unknown!	And	try	to	think	of	a	familiar	problem	having	the	same	or	a	similar	unknown.
Here	is	a	problem	related	to	yours	and	solved	before.	Could	you	use	it?	Could	you	use	its	result?	Could	you	use	its	method?	Should	you
introduce	some	auxiliary	element	in	order	to	make	its	use	possible?
Could	you	restate	the	problem?	Could	you	restate	it	still	differently?	Go	back	to	definitions.
	
If	you	cannot	solve	 the	proposed	problem	try	 to	solve	first	some	related	problem.	Could	you	imagine	a	more	accessible	related	problem?	A
more	general	 problem?	A	more	 special	 problem?	An	 analogous	 problem?	Could	you	 solve	 a	 part	 of	 the	 problem?	Keep	only	 a	 part	 of	 the
condition,	drop	the	other	part;	how	far	is	 the	unknown	then	determined,	how	can	it	vary?	Could	you	derive	something	useful	from	the	data?
Could	you	think	of	other	data	appropriate	to	determine	the	unknown?	Could	you	change	the	unknown	or	the	data,	or	both	if	necessary,	so	that
the	new	unknown	and	the	new	data	are	nearer	to	each	other?
Did	you	use	all	the	data?	Did	you	use	the	whole	condition?	Have	you	taken	into	account	all	essential	notions	involved	in	the	problem?
	



CARRYING	OUT	THE	PLAN

Third.

Carry	out	your	plan.
Carrying	out	your	plan	of	the	solution,	check	each	step.	Can	you	see	clearly	that	the	step	is	correct?	Can	you	prove	that	it	is	correct?
	



LOOKING	BACK

Fourth.

Examine	the	solution	obtained.
Can	you	check	the	result?	Can	you	check	the	argument?
Can	you	derive	the	result	differently?	Can	you	see	it	at	a	glance?
Can	you	use	the	result,	or	the	method,	for	some	other	problem?



Foreword
by	John	H.	Conway

How	to	Solve	It	is	a	wonderful	book!	This	I	realized	when	I	first	read	right	through	it	as	a	student	many
years	ago,	but	it	has	taken	me	a	long	time	to	appreciate	just	how	wonderful	it	is.	Why	is	that?	One	part	of
the	answer	is	that	the	book	is	unique.	In	all	my	years	as	a	student	and	teacher,	I	have	never	seen	another
that	lives	up	to	George	Polya’s	title	by	teaching	you	how	to	go	about	solving	problems.	A.	H.	Schoenfeld
correctly	 described	 its	 importance	 in	 his	 1987	 article	 “Polya,	 Problem	 Solving,	 and	 Education”	 in
Mathematics	Magazine:	“For	mathematics	education	and	the	world	of	problem	solving	it	marked	a	line
of	demarcation	between	two	eras,	problem	solving	before	and	after	Polya.”

It	is	one	of	the	most	successful	mathematics	books	ever	written,	having	sold	over	a	million	copies	and
been	 translated	 into	 seventeen	 languages	 since	 it	 first	 appeared	 in	 1945.	 Polya	 later	 wrote	 two	more
books	 about	 the	 art	 of	 doing	 mathematics,	 Mathematics	 and	 Plausible	 Reasoning	 (1954)	 and
Mathematical	Discovery	(two	volumes,	1962	and	1965).

The	book’s	title	makes	it	seem	that	it	is	directed	only	toward	students,	but	in	fact	it	is	addressed	just	as
much	 to	 their	 teachers.	 Indeed,	as	Polya	remarks	 in	his	 introduction,	 the	first	part	of	 the	book	 takes	 the
teacher’s	viewpoint	more	often	than	the	student’s.

Everybody	 gains	 that	 way.	 The	 student	 who	 reads	 the	 book	 on	 his	 own	 will	 find	 that	 overhearing
Polya’s	comments	to	his	non-existent	teacher	can	bring	that	desirable	person	into	being,	as	an	imaginary
but	very	helpful	 figure	 leaning	over	one’s	shoulder.	This	 is	what	happened	 to	me,	and	naturally	I	made
heavy	use	of	the	remarks	I’d	found	most	important	when	I	myself	started	teaching	a	few	years	later.

But	it	was	some	time	before	I	read	the	book	again,	and	when	I	did,	I	suddenly	realized	that	it	was	even
more	valuable	than	I’d	thought!	Many	of	Polya’s	remarks	that	hadn’t	helped	me	as	a	student	now	made	me
a	better	teacher	of	those	whose	problems	had	differed	from	mine.	Polya	had	met	many	more	students	than
I	had,	and	had	obviously	thought	very	hard	about	how	to	best	help	all	of	them	learn	mathematics.	Perhaps
his	most	important	point	is	that	learning	must	be	active.	As	he	said	in	a	lecture	on	teaching,	“Mathematics,
you	see,	 is	not	a	 spectator	 sport.	To	understand	mathematics	means	 to	be	able	 to	do	mathematics.	And
what	does	it	mean	[to	be]	doing	mathematics?	In	the	first	place,	it	means	to	be	able	to	solve	mathematical
problems.”

It	is	often	said	that	to	teach	any	subject	well,	one	has	to	understand	it	“at	least	as	well	as	one’s	students
do.”	It	is	a	paradoxical	truth	that	to	teach	mathematics	well,	one	must	also	know	how	to	misunderstand	it
at	least	to	the	extent	one’s	students	do!	If	a	teacher’s	statement	can	be	parsed	in	two	or	more	ways,	it	goes
without	saying	that	some	students	will	understand	it	one	way	and	others	another,	with	results	that	can	vary
from	 the	 hilarious	 to	 the	 tragic.	 J.	 E.	 Littlewood	 gives	 two	 amusing	 examples	 of	 assumptions	 that	 can
easily	be	made	unconsciously	and	misleadingly.	First,	he	 remarks	 that	 the	description	of	 the	coordinate
axes	(“Ox	and	Oy	as	in	2	dimensions,	Oz	vertical”)	in	Lamb’s	book	Mechanics	is	incorrect	for	him,	since
he	always	worked	in	an	armchair	with	his	feet	up!	Then,	after	asking	how	his	reader	would	present	the
picture	of	a	closed	curve	lying	all	on	one	side	of	its	tangent,	he	states	that	there	are	four	main	schools	(to
left	or	right	of	vertical	tangent,	or	above	or	below	horizontal	one)	and	that	by	lecturing	without	a	figure,
presuming	that	the	curve	was	to	the	right	of	its	vertical	tangent,	he	had	unwittingly	made	nonsense	for	the
other	three	schools.

I	 know	 of	 no	 better	 remedy	 for	 such	 presumptions	 than	 Polya’s	 counsel:	 before	 trying	 to	 solve	 a
problem,	 the	 student	 should	 demonstrate	 his	 or	 her	 understanding	 of	 its	 statement,	 preferably	 to	 a	 real
teacher,	but	 in	 lieu	of	 that,	 to	an	imagined	one.	Experienced	mathematicians	know	that	often	the	hardest
part	 of	 researching	 a	 problem	 is	 understanding	 precisely	 what	 that	 problem	 says.	 They	 often	 follow



Polya’s	wise	advice:	“If	you	can’t	solve	a	problem,	then	there	is	an	easier	problem	you	can’t	solve:	find
it.”

Readers	who	learn	from	this	book	will	also	want	to	learn	about	its	author’s	life.1
George	Polya	was	born	György	Pólya	(he	dropped	the	accents	sometime	later)	on	December	13,	1887,

in	Budapest,	Hungary,	 to	Jakab	Pólya	and	his	wife,	 the	former	Anna	Deutsch.	He	was	baptized	into	the
Roman	Catholic	faith,	to	which	Jakab,	Anna,	and	their	three	previous	children,	Jenő,	Ilona,	and	Flóra,	had
converted	from	Judaism	in	the	previous	year.	Their	fifth	child,	László,	was	born	four	years	later.

Jakab	had	changed	his	surname	from	Pollák	to	the	more	Hungarian-sounding	Pólya	five	years	before
György	was	born,	believing	that	this	might	help	him	obtain	a	university	post,	which	he	eventually	did,	but
only	shortly	before	his	untimely	death	in	1897.

At	 the	 Dániel	 Berzsenyi	 Gymnasium,	 György	 studied	 Greek,	 Latin,	 and	 German,	 in	 addition	 to
Hungarian.	It	is	surprising	to	learn	that	there	he	was	seemingly	uninterested	in	mathematics,	his	work	in
geometry	 deemed	 merely	 “satisfactory”	 compared	 with	 his	 “outstanding”	 performance	 in	 literature,
geography,	and	other	subjects.	His	favorite	subject,	outside	of	literature,	was	biology.

He	 enrolled	 at	 the	 University	 of	 Budapest	 in	 1905,	 initially	 studying	 law,	 which	 he	 soon	 dropped
because	he	found	it	too	boring.	He	then	obtained	the	certification	needed	to	teach	Latin	and	Hungarian	at	a
gymnasium,	a	certification	that	he	never	used	but	of	which	he	remained	proud.	Eventually	his	professor,
Bernát	Alexander,	advised	him	 that	 to	help	his	studies	 in	philosophy,	he	should	 take	some	mathematics
and	physics	courses.	This	was	how	he	came	to	mathematics.	Later,	he	joked	that	he	“wasn’t	good	enough
for	physics,	and	was	too	good	for	philosophy—mathematics	is	in	between.”

In	Budapest	he	was	taught	physics	by	Eötvös	and	mathematics	by	Fejér	and	was	awarded	a	doctorate
after	 spending	 the	 academic	 year	 1910–11	 in	 Vienna,	 where	 he	 took	 some	 courses	 by	Wirtinger	 and
Mertens.	He	spent	much	of	the	next	two	years	in	Göttingen,	where	he	met	many	more	mathematicians—
Klein,	Caratheodory,	Hilbert,	Runge,	Landau,	Weyl,	Hecke,	Courant,	and	Toeplitz—and	in	1914	visited
Paris,	where	he	became	acquainted	with	Picard	and	Hadamard	and	learned	that	Hurwitz	had	arranged	an
appointment	for	him	in	Zürich.	He	accepted	this	position,	writing	later:	“I	went	to	Zürich	in	order	to	be
near	Hurwitz,	and	we	were	in	close	touch	for	about	six	years,	from	my	arrival	in	Zürich	in	1914	to	his
passing	[in	1919].	I	was	very	much	impressed	by	him	and	edited	his	works.”

Of	course,	the	First	World	War	took	place	during	this	period.	It	initially	had	little	effect	on	Polya,	who
had	been	declared	unfit	for	service	in	the	Hungarian	army	as	the	result	of	a	soccer	wound.	But	later	when
the	army,	more	desperately	needing	recruits,	demanded	 that	he	return	 to	 fight	 for	his	country,	his	strong
pacifist	views	led	him	to	refuse.	As	a	consequence,	he	was	unable	to	visit	Hungary	for	many	years,	and	in
fact	did	not	do	so	until	1967,	fifty-four	years	after	he	left.

In	the	meantime,	he	had	taken	Swiss	citizenship	and	married	a	Swiss	girl,	Stella	Vera	Weber,	in	1918.
Between	1918	and	1919,	he	published	papers	on	a	wide	range	of	mathematical	subjects,	such	as	series,
number	theory,	combinatorics,	voting	systems,	astronomy,	and	probability.	He	was	made	an	extraordinary
professor	 at	 the	Zürich	ETH	 in	1920,	 and	 a	 few	years	 later	 he	 and	Gábor	Szegő	 published	 their	 book
Aufgaben	und	Lehrsatze	aus	der	Analysis	 (“Problems	and	Theorems	in	Analysis”),	described	by	G.	L.
Alexanderson	and	L.	H.	Lange	in	their	obituary	of	Polya	as	“a	mathematical	masterpiece	that	assured	their
reputations.”

That	book	appeared	in	1925,	after	Polya	had	obtained	a	Rockefeller	Fellowship	to	work	in	England,
where	 he	 collaborated	 with	 Hardy	 and	 Littlewood	 on	 what	 later	 became	 their	 book	 Inequalities
(Cambridge	 University	 Press,	 1936).	 He	 used	 a	 second	 Rockefeller	 Fellowship	 to	 visit	 Princeton
University	 in	 1933,	 and	 while	 in	 the	 United	 States	 was	 invited	 by	 H.	 F.	 Blichfeldt	 to	 visit	 Stanford
University,	which	he	greatly	enjoyed,	and	which	ultimately	became	his	home.	Polya	held	a	professorship
at	Stanford	from	1943	until	his	retirement	in	1953,	and	it	was	there,	in	1978,	that	he	taught	his	last	course,



in	combinatorics;	he	died	on	September	7,	1985,	at	the	age	of	ninety-seven.
Some	readers	will	want	to	know	about	Polya’s	many	contributions	to	mathematics.	Most	of	them	relate

to	analysis	and	are	too	technical	to	be	understood	by	non-experts,	but	a	few	are	worth	mentioning.
In	probability	theory,	Polya	is	responsible	for	the	now-standard	term	“Central	Limit	Theorem”	and	for

proving	that	the	Fourier	transform	of	a	probability	measure	is	a	characteristic	function	and	that	a	random
walk	on	the	integer	lattice	closes	with	probability	1	if	and	only	if	the	dimension	is	at	most	2.

In	 geometry,	 Polya	 independently	 re-enumerated	 the	 seventeen	 plane	 crystallographic	 groups	 (their
first	enumeration,	by	E.	S.	Fedorov,	having	been	forgotten)	and	together	with	P.	Niggli	devised	a	notation
for	them.

In	 combinatorics,	 Polya’s	 Enumeration	 Theorem	 is	 now	 a	 standard	 way	 of	 counting	 configurations
according	 to	 their	 symmetry.	 It	 has	 been	 described	 by	 R.	 C.	 Read	 as	 “a	 remarkable	 theorem	 in	 a
remarkable	paper,	and	a	landmark	in	the	history	of	combinatorial	analysis.”
How	to	Solve	It	was	written	in	German	during	Polya’s	time	in	Zürich,	which	ended	in	1940,	when	the

European	situation	forced	him	to	 leave	for	 the	United	States.	Despite	 the	book’s	eventual	success,	 four
publishers	rejected	the	English	version	before	Princeton	University	Press	brought	it	out	in	1945.	In	their
hands,	How	to	Solve	It	 rapidly	became—and	continues	to	be—one	of	 the	most	successful	mathematical
books	of	all	time.

1The	 following	 biographical	 information	 is	 taken	 from	 that	 given	 by	 J.	 J.	 O’Connor	 and	 E.	 F.	 Robertson	 in	 the	 MacTutor	 History	 of
Mathematics	Archive	(www-gap.dcs.st-and.ac.uk/~history/).

http://www-gap.dcs.st-and.ac.uk/~history/


Introduction

The	 following	 considerations	 are	 grouped	 around	 the	 preceding	 list	 of	 questions	 and	 suggestions
entitled	“How	to	Solve	It.”	Any	question	or	suggestion	quoted	from	it	will	be	printed	in	italics,	and	the
whole	list	will	be	referred	to	simply	as	“the	list”	or	as	“our	list.”

The	following	pages	will	discuss	the	purpose	of	the	list,	illustrate	its	practical	use	by	examples,	and
explain	the	underlying	notions	and	mental	operations.	By	way	of	preliminary	explanation,	this	much	may
be	said:	If,	using	them	properly,	you	address	these	questions	and	suggestions	to	yourself,	 they	may	help
you	to	solve	your	problem.	If,	using	them	properly,	you	address	the	same	questions	and	suggestions	to	one
of	your	students,	you	may	help	him	to	solve	his	problem.

The	book	is	divided	into	four	parts.
The	title	of	the	first	part	is	“In	the	Classroom.”	It	contains	twenty	sections.	Each	section	will	be	quoted

by	its	number	in	heavy	type	as,	for	instance,	“section	7.”	Sections	1	to	5	discuss	the	“Purpose”	of	our	list
in	general	terms.	Sections	6	to	17	explain	what	are	the	“Main	Divisions,	Main	Questions”	of	the	list,	and
discuss	a	first	practical	example.	Sections	18,	19,	20	add	“More	Examples.”

The	 title	 of	 the	 very	 short	 second	 part	 is	 “How	 to	 Solve	 It.”	 It	 is	written	 in	 dialogue;	 a	 somewhat
idealized	teacher	answers	short	questions	of	a	somewhat	idealized	student.

The	 third	 and	most	 extensive	 part	 is	 a	 “Short	 Dictionary	 of	 Heuristic”;	 we	 shall	 refer	 to	 it	 as	 the
“Dictionary.”	 It	 contains	 sixty-seven	 articles	 arranged	 alphabetically.	 For	 example,	 the	meaning	 of	 the
term	HEURISTIC	(set	in	small	capitals)	is	explained	in	an	article	with	this	title	on	page	112.	When	the	title
of	such	an	article	is	referred	to	within	the	text	it	will	be	set	in	small	capitals.	Certain	paragraphs	of	a	few
articles	 are	 more	 technical;	 they	 are	 enclosed	 in	 square	 brackets.	 Some	 articles	 are	 fairly	 closely
connected	with	 the	 first	part	 to	which	 they	add	 further	 illustrations	and	more	 specific	comments.	Other
articles	go	somewhat	beyond	 the	aim	of	 the	first	part	of	which	 they	explain	 the	background.	There	 is	a
key-article	on	MODERN	HEURISTIC.	It	explains	the	connection	of	the	main	articles	and	the	plan	underlying
the	Dictionary;	it	contains	also	directions	how	to	find	information	about	particular	items	of	the	list.	It	must
be	emphasized	that	there	is	a	common	plan	and	a	certain	unity,	because	the	articles	of	the	Dictionary	show
the	greatest	outward	variety.	There	are	a	few	longer	articles	devoted	to	the	systematic	though	condensed
discussion	of	some	general	 theme;	others	contain	more	specific	comments,	still	others	cross-references,
or	historical	data,	or	quotations,	or	aphorisms,	or	even	jokes.

The	Dictionary	should	not	be	read	too	quickly;	its	text	is	often	condensed,	and	now	and	then	somewhat
subtle.	The	reader	may	refer	to	the	Dictionary	for	information	about	particular	points.	If	these	points	come
from	his	experience	with	his	own	problems	or	his	own	students,	the	reading	has	a	much	better	chance	to
be	profitable.

The	 title	of	 the	 fourth	part	 is	“Problems,	Hints,	Solutions.”	 It	proposes	a	 few	problems	 to	 the	more
ambitious	reader.	Each	problem	is	followed	(in	proper	distance)	by	a	“hint”	that	may	reveal	a	way	to	the
result	which	is	explained	in	the	“solution.”

We	have	mentioned	 repeatedly	 the	“student”	 and	 the	“teacher”	 and	we	shall	 refer	 to	 them	again	and
again.	It	may	be	good	to	observe	that	the	“student”	may	be	a	high	school	student,	or	a	college	student,	or
anyone	else	who	is	studying	mathematics.	Also	the	“teacher”	may	be	a	high	school	teacher,	or	a	college
instructor,	or	anyone	interested	in	the	technique	of	teaching	mathematics.	The	author	looks	at	the	situation
sometimes	from	the	point	of	view	of	the	student	and	sometimes	from	that	of	the	teacher	(the	latter	case	is
preponderant	in	the	first	part).	Yet	most	of	the	time	(especially	in	the	third	part)	the	point	of	view	is	that	of
a	person	who	is	neither	teacher	nor	student	but	anxious	to	solve	the	problem	before	him.



How	to	Solve	It



PART	I.	IN	THE	CLASSROOM

PURPOSE
1.	Helping	the	student.	One	of	the	most	important	tasks	of	the	teacher	is	to	help	his	students.	This	task

is	not	quite	easy;	it	demands	time,	practice,	devotion,	and	sound	principles.
The	student	should	acquire	as	much	experience	of	independent	work	as	possible.	But	if	he	is	left	alone

with	his	problem	without	any	help	or	with	insufficient	help,	he	may	make	no	progress	at	all.	If	the	teacher
helps	too	much,	nothing	is	left	to	the	student.	The	teacher	should	help,	but	not	too	much	and	not	too	little,
so	that	the	student	shall	have	a	reasonable	share	of	the	work.

If	the	student	is	not	able	to	do	much,	the	teacher	should	leave	him	at	least	some	illusion	of	independent
work.	In	order	to	do	so,	the	teacher	should	help	the	student	discreetly,	unobtrusively.

The	 best	 is,	 however,	 to	 help	 the	 student	 naturally.	 The	 teacher	 should	 put	 himself	 in	 the	 student’s
place,	he	should	see	the	student’s	case,	he	should	try	to	understand	what	is	going	on	in	the	student’s	mind,
and	ask	a	question	or	indicate	a	step	that	could	have	occurred	to	the	student	himself.

2.	 Questions,	 recommendations,	 mental	 operations.	 Trying	 to	 help	 the	 student	 effectively	 but
unobtrusively	and	naturally,	 the	 teacher	 is	 led	 to	ask	 the	same	questions	and	 to	 indicate	 the	same	steps
again	and	again.	Thus,	in	countless	problems,	we	have	to	ask	the	question:	What	is	the	unknown?	We	may
vary	the	words,	and	ask	the	same	thing	in	many	different	ways:	What	is	required?	What	do	you	want	to
find?	What	are	you	supposed	to	seek?	The	aim	of	these	questions	is	to	focus	the	student’s	attention	upon
the	 unknown.	 Sometimes,	 we	 obtain	 the	 same	 effect	 more	 naturally	 with	 a	 suggestion:	 Look	 at	 the
unknown!	Question	and	suggestion	aim	at	the	same	effect;	they	tend	to	provoke	the	same	mental	operation.

It	seemed	to	the	author	that	it	might	be	worth	while	to	collect	and	to	group	questions	and	suggestions
which	are	typically	helpful	in	discussing	problems	with	students.	The	list	we	study	contains	questions	and
suggestions	of	this	sort,	carefully	chosen	and	arranged;	they	are	equally	useful	to	the	problem-solver	who
works	by	himself.	If	the	reader	is	sufficiently	acquainted	with	the	list	and	can	see,	behind	the	suggestion,
the	 action	 suggested,	 he	 may	 realize	 that	 the	 list	 enumerates,	 indirectly,	mental	 operations	 typically
useful	for	the	solution	of	problems.	These	operations	are	listed	in	the	order	in	which	they	are	most	likely
to	occur.

3.	Generality	is	an	important	characteristic	of	the	questions	and	suggestions	contained	in	our	list.	Take
the	questions:	What	 is	 the	unknown?	What	are	 the	data?	What	 is	 the	condition?	 These	 questions	 are
generally	applicable,	we	can	ask	them	with	good	effect	dealing	with	all	sorts	of	problems.	Their	use	is
not	 restricted	 to	 any	 subject-matter.	 Our	 problem	 may	 be	 algebraic	 or	 geometric,	 mathematical	 or
nonmathematical,	theoretical	or	practical,	a	serious	problem	or	a	mere	puzzle;	it	makes	no	difference,	the
questions	make	sense	and	might	help	us	to	solve	the	problem.

There	is	a	restriction,	 in	fact,	but	 it	has	nothing	to	do	with	the	subject-matter.	Certain	questions	and
suggestions	of	the	list	are	applicable	to	“problems	to	find”	only,	not	to	“problems	to	prove.”	If	we	have	a
problem	of	the	latter	kind	we	must	use	different	questions;	see	PROBLEMS	TO	FIND,	PROBLEMS	TO	PROVE.



4.	 Common	 sense.	 The	 questions	 and	 suggestions	 of	 our	 list	 are	 general,	 but,	 except	 for	 their
generality,	they	are	natural,	simple,	obvious,	and	proceed	from	plain	common	sense.	Take	the	suggestion:
Look	at	 the	unknown!	And	try	 to	 think	of	a	 familiar	problem	having	the	same	or	a	similar	unknown.
This	suggestion	advises	you	to	do	what	you	would	do	anyhow,	without	any	advice,	if	you	were	seriously
concerned	with	your	problem.	Are	you	hungry?	You	wish	to	obtain	food	and	you	think	of	familiar	ways	of
obtaining	food.	Have	you	a	problem	of	geometric	construction?	You	wish	to	construct	a	triangle	and	you
think	of	 familiar	ways	of	constructing	a	 triangle.	Have	you	a	problem	of	any	kind?	You	wish	 to	 find	a
certain	unknown,	and	you	think	of	familiar	ways	of	finding	such	an	unknown,	or	some	similar	unknown.	If
you	do	so	you	follow	exactly	the	suggestion	we	quoted	from	our	list.	And	you	are	on	the	right	track,	too;
the	suggestion	is	a	good	one,	it	suggests	to	you	a	procedure	which	is	very	frequently	successful.

All	the	questions	and	suggestions	of	our	list	are	natural,	simple,	obvious,	just	plain	common	sense;	but
they	state	plain	common	sense	in	general	terms.	They	suggest	a	certain	conduct	which	comes	naturally	to
any	person	who	is	seriously	concerned	with	his	problem	and	has	some	common	sense.	But	the	person	who
behaves	 the	 right	way	 usually	 does	 not	 care	 to	 express	 his	 behavior	 in	 clear	words	 and,	 possibly,	 he
cannot	express	it	so;	our	list	tries	to	express	it	so.

5.	Teacher	and	student.	Imitation	and	practice.	There	are	two	aims	which	the	teacher	may	have	in
view	when	addressing	to	his	students	a	question	or	a	suggestion	of	 the	 list:	First,	 to	help	 the	student	 to
solve	the	problem	at	hand.	Second,	to	develop	the	student’s	ability	so	that	he	may	solve	future	problems
by	himself.

Experience	 shows	 that	 the	questions	 and	 suggestions	of	our	 list,	 appropriately	used,	very	 frequently
help	the	student.	They	have	two	common	characteristics,	common	sense	and	generality.	As	they	proceed
from	plain	common	sense	they	very	often	come	naturally;	they	could	have	occurred	to	the	student	himself.
As	they	are	general,	they	help	unobtrusively;	they	just	indicate	a	general	direction	and	leave	plenty	for	the
student	to	do.

But	 the	 two	aims	we	mentioned	before	are	closely	connected;	 if	 the	 student	 succeeds	 in	 solving	 the
problem	at	 hand,	 he	 adds	 a	 little	 to	 his	 ability	 to	 solve	 problems.	Then,	we	 should	not	 forget	 that	 our
questions	are	general,	 applicable	 in	many	cases.	 If	 the	 same	question	 is	 repeatedly	helpful,	 the	 student
will	scarcely	fail	to	notice	it	and	he	will	be	induced	to	ask	the	question	by	himself	in	a	similar	situation.
Asking	 the	 question	 repeatedly,	 he	may	 succeed	once	 in	 eliciting	 the	 right	 idea.	By	 such	 a	 success,	 he
discovers	the	right	way	of	using	the	question,	and	then	he	has	really	assimilated	it.

The	student	may	absorb	a	few	questions	of	our	list	so	well	that	he	is	finally	able	to	put	to	himself	the
right	 question	 in	 the	 right	 moment	 and	 to	 perform	 the	 corresponding	 mental	 operation	 naturally	 and
vigorously.	Such	a	student	has	certainly	derived	 the	greatest	possible	profit	 from	our	 list.	What	can	 the
teacher	do	in	order	to	obtain	this	best	possible	result?

Solving	 problems	 is	 a	 practical	 skill	 like,	 let	 us	 say,	 swimming.	We	 acquire	 any	 practical	 skill	 by
imitation	and	practice.	Trying	to	swim,	you	imitate	what	other	people	do	with	their	hands	and	feet	to	keep
their	 heads	 above	 water,	 and,	 finally,	 you	 learn	 to	 swim	 by	 practicing	 swimming.	 Trying	 to	 solve
problems,	you	have	to	observe	and	to	imitate	what	other	people	do	when	solving	problems	and,	finally,
you	learn	to	do	problems	by	doing	them.

The	teacher	who	wishes	to	develop	his	students’	ability	to	do	problems	must	instill	some	interest	for
problems	 into	 their	minds	and	give	 them	plenty	of	opportunity	 for	 imitation	and	practice.	 If	 the	 teacher
wishes	to	develop	in	his	students	the	mental	operations	which	correspond	to	the	questions	and	suggestions
of	 our	 list,	 he	 puts	 these	 questions	 and	 suggestions	 to	 the	 students	 as	 often	 as	 he	 can	 do	 so	 naturally.
Moreover,	when	the	teacher	solves	a	problem	before	the	class,	he	should	dramatize	his	ideas	a	little	and
he	 should	 put	 to	 himself	 the	 same	 questions	which	 he	 uses	when	 helping	 the	 students.	 Thanks	 to	 such
guidance,	the	student	will	eventually	discover	the	right	use	of	these	questions	and	suggestions,	and	doing
so	he	will	acquire	something	 that	 is	more	 important	 than	 the	knowledge	of	any	particular	mathematical



fact.

MAIN	DIVISIONS,	MAIN	QUESTIONS
6.	Four	phases.	Trying	to	find	the	solution,	we	may	repeatedly	change	our	point	of	view,	our	way	of

looking	at	the	problem.	We	have	to	shift	our	position	again	and	again.	Our	conception	of	the	problem	is
likely	to	be	rather	incomplete	when	we	start	the	work;	our	outlook	is	different	when	we	have	made	some
progress;	it	is	again	different	when	we	have	almost	obtained	the	solution.

In	 order	 to	 group	 conveniently	 the	 questions	 and	 suggestions	 of	 our	 list,	 we	 shall	 distinguish	 four
phases	of	the	work.	First,	we	have	to	understand	the	problem;	we	have	to	see	clearly	what	is	required.
Second,	we	have	to	see	how	the	various	items	are	connected,	how	the	unknown	is	linked	to	the	data,	in
order	to	obtain	the	idea	of	the	solution,	to	make	a	plan.	Third,	we	carry	out	our	plan.	Fourth,	we	 look
back	at	the	completed	solution,	we	review	and	discuss	it.

Each	of	these	phases	has	its	importance.	It	may	happen	that	a	student	hits	upon	an	exceptionally	bright
idea	 and	 jumping	 all	 preparations	 blurts	 out	 with	 the	 solution.	 Such	 lucky	 ideas,	 of	 course,	 are	 most
desirable,	but	something	very	undesirable	and	unfortunate	may	result	if	the	student	leaves	out	any	of	the
four	phases	without	having	a	good	idea.	The	worst	may	happen	if	the	student	embarks	upon	computations
or	 constructions	 without	 having	 understood	 the	 problem.	 It	 is	 generally	 useless	 to	 carry	 out	 details
without	having	seen	the	main	connection,	or	having	made	a	sort	of	plan.	Many	mistakes	can	be	avoided	if,
carrying	out	his	plan,	the	student	checks	each	step.	Some	of	the	best	effects	may	be	lost	if	the	student	fails
to	reexamine	and	to	reconsider	the	completed	solution.

7.	Understanding	the	problem.	It	is	foolish	to	answer	a	question	that	you	do	not	understand.	It	is	sad
to	work	for	an	end	that	you	do	not	desire.	Such	foolish	and	sad	things	often	happen,	in	and	out	of	school,
but	the	teacher	should	try	to	prevent	them	from	happening	in	his	class.	The	student	should	understand	the
problem.	But	he	should	not	only	understand	it,	he	should	also	desire	its	solution.	If	the	student	is	lacking
in	 understanding	 or	 in	 interest,	 it	 is	 not	 always	 his	 fault;	 the	 problem	 should	 be	well	 chosen,	 not	 too
difficult	 and	 not	 too	 easy,	 natural	 and	 interesting,	 and	 some	 time	 should	 be	 allowed	 for	 natural	 and
interesting	presentation.

First	of	all,	the	verbal	statement	of	the	problem	must	be	understood.	The	teacher	can	check	this,	up	to	a
certain	 extent;	 he	 asks	 the	 student	 to	 repeat	 the	 statement,	 and	 the	 student	 should	 be	 able	 to	 state	 the
problem	 fluently.	 The	 student	 should	 also	 be	 able	 to	 point	 out	 the	 principal	 parts	 of	 the	 problem,	 the
unknown,	the	data,	the	condition.	Hence,	the	teacher	can	seldom	afford	to	miss	the	questions:	What	is	the
unknown?	What	are	the	data?	What	is	the	condition?

The	student	should	consider	the	principal	parts	of	the	problem	attentively,	repeatedly,	and	from	various
sides.	 If	 there	 is	 a	 figure	 connected	with	 the	 problem	he	 should	draw	a	 figure	 and	 point	 out	 on	 it	 the
unknown	 and	 the	 data.	 If	 it	 is	 necessary	 to	 give	 names	 to	 these	 objects	 he	 should	 introduce	 suitable
notation;	devoting	some	attention	to	the	appropriate	choice	of	signs,	he	is	obliged	to	consider	the	objects
for	which	the	signs	have	to	be	chosen.	There	is	another	question	which	may	be	useful	in	this	preparatory
stage	 provided	 that	we	 do	 not	 expect	 a	 definitive	 answer	 but	 just	 a	 provisional	 answer,	 a	 guess:	 Is	 it
possible	to	satisfy	the	condition?

(In	 the	 exposition	 of	 Part	 II	 [p.	 33]	 “Understanding	 the	 problem”	 is	 subdivided	 into	 two	 stages:
“Getting	acquainted”	and	“Working	for	better	understanding.”)

8.	 Example.	 Let	 us	 illustrate	 some	 of	 the	 points	 explained	 in	 the	 foregoing	 section.	 We	 take	 the
following	simple	problem:	Find	the	diagonal	of	a	rectangular	parallelepiped	of	which	the	length,	the
width,	and	the	height	are	known.



In	 order	 to	 discuss	 this	 problem	 profitably,	 the	 students	 must	 be	 familiar	 with	 the	 theorem	 of
Pythagoras,	and	with	some	of	its	applications	in	plane	geometry,	but	they	may	have	very	little	systematic
knowledge	 in	 solid	 geometry.	The	 teacher	may	 rely	 here	 upon	 the	 student’s	 unsophisticated	 familiarity
with	spatial	relations.

The	 teacher	can	make	 the	problem	interesting	by	making	 it	concrete.	The	classroom	is	a	 rectangular
parallelepiped	whose	dimensions	could	be	measured,	and	can	be	estimated;	the	students	have	to	find,	to
“measure	indirectly,”	the	diagonal	of	the	classroom.	The	teacher	points	out	the	length,	the	width,	and	the
height	 of	 the	 classroom,	 indicates	 the	 diagonal	 with	 a	 gesture,	 and	 enlivens	 his	 figure,	 drawn	 on	 the
blackboard,	by	referring	repeatedly	to	the	classroom.

The	dialogue	between	the	teacher	and	the	students	may	start	as	follows:
“What	is	the	unknown?”
“The	length	of	the	diagonal	of	a	parallelepiped.”
“What	are	the	data?”
“The	length,	the	width,	and	the	height	of	the	parallelepiped.”
“Introduce	suitable	notation.	Which	letter	should	denote	the	unknown?”
“x.”
“Which	letters	would	you	choose	for	the	length,	the	width,	and	the	height?”
“a,	b,	c.”
“What	is	the	condition,	linking	a,	b,	c,	and	x?”
“x	is	the	diagonal	of	the	parallelepiped	of	which	a,	b,	and	c	are	the	length,	the	width,	and	the	height.”
“Is	it	a	reasonable	problem?	I	mean,	is	the	condition	sufficient	to	determine	the	unknown?”
“Yes,	 it	 is.	 If	we	know	a,	b,	c,	we	know	the	parallelepiped.	 If	 the	parallelepiped	 is	determined,	 the

diagonal	is	determined.”
9.	Devising	a	plan.	We	have	a	plan	when	we	know,	or	know	at	 least	 in	outline,	which	calculations,

computations,	 or	 constructions	 we	 have	 to	 perform	 in	 order	 to	 obtain	 the	 unknown.	 The	 way	 from
understanding	the	problem	to	conceiving	a	plan	may	be	long	and	tortuous.	In	fact,	the	main	achievement	in
the	 solution	of	 a	problem	 is	 to	 conceive	 the	 idea	of	 a	plan.	This	 idea	may	emerge	gradually.	Or,	 after
apparently	unsuccessful	 trials	and	a	period	of	hesitation,	 it	may	occur	suddenly,	 in	a	flash,	as	a	“bright
idea.”	The	best	that	the	teacher	can	do	for	the	student	is	to	procure	for	him,	by	unobtrusive	help,	a	bright
idea.	The	questions	and	suggestions	we	are	going	to	discuss	tend	to	provoke	such	an	idea.

In	order	to	be	able	to	see	the	student’s	position,	the	teacher	should	think	of	his	own	experience,	of	his
difficulties	and	successes	in	solving	problems.

We	know,	of	course,	that	it	is	hard	to	have	a	good	idea	if	we	have	little	knowledge	of	the	subject,	and
impossible	to	have	it	if	we	have	no	knowledge.	Good	ideas	are	based	on	past	experience	and	formerly
acquired	knowledge.	Mere	remembering	is	not	enough	for	a	good	idea,	but	we	cannot	have	any	good	idea
without	recollecting	some	pertinent	facts;	materials	alone	are	not	enough	for	constructing	a	house	but	we
cannot	construct	a	house	without	collecting	the	necessary	materials.	The	materials	necessary	for	solving	a
mathematical	 problem	are	 certain	 relevant	 items	of	 our	 formerly	 acquired	mathematical	 knowledge,	 as
formerly	solved	problems,	or	 formerly	proved	 theorems.	Thus,	 it	 is	often	appropriate	 to	start	 the	work
with	the	question:	Do	you	know	a	related	problem?

The	difficulty	is	that	there	are	usually	too	many	problems	which	are	somewhat	related	to	our	present
problem,	that	is,	have	some	point	in	common	with	it.	How	can	we	choose	the	one,	or	the	few,	which	are
really	 useful?	 There	 is	 a	 suggestion	 that	 puts	 our	 finger	 on	 an	 essential	 common	 point:	 Look	 at	 the
unknown!	And	try	to	think	of	a	familiar	problem	having	the	same	or	a	similar	unknown.

If	we	succeed	in	recalling	a	formerly	solved	problem	which	is	closely	related	to	our	present	problem,
we	are	lucky.	We	should	try	to	deserve	such	luck;	we	may	deserve	it	by	exploiting	it.	Here	is	a	problem



related	to	yours	and	solved	before.	Could	you	use	it?
The	foregoing	questions,	well	understood	and	seriously	considered,	very	often	help	 to	start	 the	right

train	of	 ideas;	but	 they	cannot	help	always,	 they	cannot	work	magic.	 If	 they	do	not	work,	we	must	 look
around	for	some	other	appropriate	point	of	contact,	and	explore	the	various	aspects	of	our	problem;	we
have	to	vary,	to	transform,	to	modify	the	problem.	Could	you	restate	the	problem?	Some	of	the	questions
of	 our	 list	 hint	 specific	 means	 to	 vary	 the	 problem,	 as	 generalization,	 specialization,	 use	 of	 analogy,
dropping	a	part	of	 the	condition,	 and	 so	on;	 the	details	 are	 important	but	we	cannot	go	 into	 them	now.
Variation	 of	 the	 problem	 may	 lead	 to	 some	 appropriate	 auxiliary	 problem:	 If	 you	 cannot	 solve	 the
proposed	problem	try	to	solve	first	some	related	problem.

Trying	 to	 apply	 various	 known	 problems	 or	 theorems,	 considering	 various	 modifications,
experimenting	with	various	auxiliary	problems,	we	may	stray	so	far	from	our	original	problem	that	we	are
in	danger	of	losing	it	altogether.	Yet	there	is	a	good	question	that	may	bring	us	back	to	it:	Did	you	use	all
the	data?	Did	you	use	the	whole	condition?

10.	 Example.	 We	 return	 to	 the	 example	 considered	 in	 section	 8.	 As	 we	 left	 it,	 the	 students	 just
succeeded	in	understanding	the	problem	and	showed	some	mild	interest	in	it.	They	could	now	have	some
ideas	of	their	own,	some	initiative.	If	the	teacher,	having	watched	sharply,	cannot	detect	any	sign	of	such
initiative	he	has	to	resume	carefully	his	dialogue	with	the	students.	He	must	be	prepared	to	repeat	with
some	modification	 the	questions	which	 the	 students	do	not	 answer.	He	must	 be	prepared	 to	meet	 often
with	the	disconcerting	silence	of	the	students	(which	will	be	indicated	by	dots	.	.	.	.	.).
“Do	you	know	a	related	problem?”
.	.	.	.	.
“Look	at	the	unknown!	Do	you	know	a	problem	having	the	same	unknown?”
.	.	.	.	.
“Well,	what	is	the	unknown?”
“The	diagonal	of	a	parallelepiped.”
“Do	you	know	any	problem	with	the	same	unknown?”
“No.	We	have	not	had	any	problem	yet	about	the	diagonal	of	a	parallelepiped.”
“Do	you	know	any	problem	with	a	similar	unknown?”
.	.	.	.	.
“You	 see,	 the	diagonal	 is	 a	 segment,	 the	 segment	 of	 a	 straight	 line.	Did	you	never	 solve	 a	 problem

whose	unknown	was	the	length	of	a	line?”
“Of	course,	we	have	solved	such	problems.	For	instance,	to	find	a	side	of	a	right	triangle.”
“Good!	Here	is	a	problem	related	to	yours	and	solved	before.	Could	you	use	it?”
.	.	.	.	.
“You	were	lucky	enough	to	remember	a	problem	which	is	related	to	your	present	one	and	which	you

solved	before.	Would	you	like	to	use	it?	Could	you	introduce	some	auxiliary	element	in	order	to	make
its	use	possible?”



FIG.	1

.	.	.	.	.
“Look	here,	the	problem	you	remembered	is	about	a	triangle.	Have	you	any	triangle	in	your	figure?”
Let	 us	 hope	 that	 the	 last	 hint	 was	 explicit	 enough	 to	 provoke	 the	 idea	 of	 the	 solution	 which	 is	 to

introduce	a	right	triangle,	(emphasized	in	Fig.	1)	of	which	the	required	diagonal	is	the	hypotenuse.	Yet	the
teacher	should	be	prepared	for	the	case	that	even	this	fairly	explicit	hint	is	insufficient	to	shake	the	torpor
of	the	students;	and	so	he	should	be	prepared	to	use	a	whole	gamut	of	more	and	more	explicit	hints.

“Would	you	like	to	have	a	triangle	in	the	figure?”
“What	sort	of	triangle	would	you	like	to	have	in	the	figure?”
“You	cannot	find	yet	the	diagonal;	but	you	said	that	you	could	find	the	side	of	a	triangle.	Now,	what

will	you	do?”
“Could	you	find	the	diagonal,	if	it	were	a	side	of	a	triangle?”
When,	eventually,	with	more	or	 less	help,	 the	 students	 succeed	 in	 introducing	 the	decisive	auxiliary

element,	the	right	triangle	emphasized	in	Fig.	1,	the	teacher	should	convince	himself	that	the	students	see
sufficiently	far	ahead	before	encouraging	them	to	go	into	actual	calculations.

“I	 think	 that	 it	 was	 a	 good	 idea	 to	 draw	 that	 triangle.	 You	 have	 now	 a	 triangle;	 but	 have	 you	 the
unknown?”

“The	unknown	is	the	hypotenuse	of	the	triangle;	we	can	calculate	it	by	the	theorem	of	Pythagoras.”
“You	can,	if	both	legs	are	known;	but	are	they?”
“One	 leg	 is	 given,	 it	 is	 c.	 And	 the	 other,	 I	 think,	 is	 not	 difficult	 to	 find.	 Yes,	 the	 other	 leg	 is	 the

hypotenuse	of	another	right	triangle.”
“Very	good!	Now	I	see	that	you	have	a	plan.”
11.	Carrying	out	the	plan.	To	devise	a	plan,	to	conceive	the	idea	of	the	solution	is	not	easy.	It	takes	so

much	to	succeed;	formerly	acquired	knowledge,	good	mental	habits,	concentration	upon	the	purpose,	and
one	more	thing:	good	luck.	To	carry	out	the	plan	is	much	easier;	what	we	need	is	mainly	patience.

The	plan	gives	a	general	outline;	we	have	to	convince	ourselves	that	the	details	fit	into	the	outline,	and
so	we	have	to	examine	the	details	one	after	the	other,	patiently,	till	everything	is	perfectly	clear,	and	no
obscure	corner	remains	in	which	an	error	could	be	hidden.

If	 the	 student	has	 really	conceived	a	plan,	 the	 teacher	has	now	a	 relatively	peaceful	 time.	The	main
danger	 is	 that	 the	student	forgets	his	plan.	This	may	easily	happen	if	 the	student	received	his	plan	from
outside,	and	accepted	it	on	the	authority	of	 the	teacher;	but	 if	he	worked	for	 it	himself,	even	with	some
help,	and	conceived	the	final	idea	with	satisfaction,	he	will	not	lose	this	idea	easily.	Yet	the	teacher	must
insist	that	the	student	should	check	each	step.

We	 may	 convince	 ourselves	 of	 the	 correctness	 of	 a	 step	 in	 our	 reasoning	 either	 “intuitively”	 or



“formally.”	We	may	concentrate	upon	the	point	in	question	till	we	see	it	so	clearly	and	distinctly	that	we
have	no	doubt	that	the	step	is	correct;	or	we	may	derive	the	point	in	question	according	to	formal	rules.
(The	difference	between	“insight”	and	“formal	proof”	is	clear	enough	in	many	important	cases;	we	may
leave	further	discussion	to	philosophers.)

The	main	 point	 is	 that	 the	 student	 should	 be	 honestly	 convinced	 of	 the	 correctness	 of	 each	 step.	 In
certain	cases,	 the	 teacher	may	emphasize	 the	difference	between	“seeing”	 and	“proving”:	Can	you	 see
clearly	that	the	step	is	correct?	But	can	you	also	prove	that	the	step	is	correct?

12.	Example.	Let	us	resume	our	work	at	the	point	where	we	left	it	at	the	end	of	section	10.	The	student,
at	last,	has	got	the	idea	of	the	solution.	He	sees	the	right	triangle	of	which	the	unknown	x	is	the	hypotenuse
and	the	given	height	c	is	one	of	the	legs;	the	other	leg	is	the	diagonal	of	a	face.	The	student	must,	possibly,
be	urged	to	introduce	suitable	notation.	He	should	choose	y	 to	denote	that	other	leg,	 the	diagonal	of	 the
face	whose	sides	are	a	and	b.	Thus,	he	may	see	more	clearly	the	idea	of	the	solution	which	is	to	introduce
an	auxiliary	problem	whose	unknown	is	y.	Finally,	working	at	one	right	 triangle	after	 the	other,	he	may
obtain	(see	Fig.	1)

x2	=	y2	+	c2
y2	=	a2	+	b2

and	hence,	eliminating	the	auxiliary	unknown	y,

The	 teacher	 has	 no	 reason	 to	 interrupt	 the	 student	 if	 he	 carries	 out	 these	 details	 correctly	 except,
possibly,	to	warn	him	that	he	should	check	each	step.	Thus,	the	teacher	may	ask:

“Can	you	see	clearly	that	the	triangle	with	sides	x,	y,	c	is	a	right	triangle?”
To	 this	 question	 the	 student	 may	 answer	 honestly	 “Yes”	 but	 he	 could	 be	 much	 embarrassed	 if	 the

teacher,	not	satisfied	with	the	intuitive	conviction	of	the	student,	should	go	on	asking:
“But	can	you	prove	that	this	triangle	is	a	right	triangle?”
Thus,	the	teacher	should	rather	suppress	this	question	unless	the	class	has	had	a	good	initiation	in	solid

geometry.	 Even	 in	 the	 latter	 case,	 there	 is	 some	 danger	 that	 the	 answer	 to	 an	 incidental	 question	may
become	the	main	difficulty	for	the	majority	of	the	students.

13.	Looking	back.	Even	fairly	good	students,	when	they	have	obtained	the	solution	of	the	problem	and
written	down	neatly	 the	argument,	shut	 their	books	and	look	for	something	else.	Doing	so,	 they	miss	an
important	and	instructive	phase	of	the	work.	By	looking	back	at	the	completed	solution,	by	reconsidering
and	reexamining	the	result	and	the	path	that	led	to	it,	they	could	consolidate	their	knowledge	and	develop
their	ability	to	solve	problems.	A	good	teacher	should	understand	and	impress	on	his	students	the	view
that	no	problem	whatever	is	completely	exhausted.	There	remains	always	something	to	do;	with	sufficient
study	 and	 penetration,	 we	 could	 improve	 any	 solution,	 and,	 in	 any	 case,	 we	 can	 always	 improve	 our
understanding	of	the	solution.

The	student	has	now	carried	through	his	plan.	He	has	written	down	the	solution,	checking	each	step.
Thus,	he	should	have	good	reasons	to	believe	that	his	solution	is	correct.	Nevertheless,	errors	are	always
possible,	especially	if	the	argument	is	long	and	involved.	Hence,	verifications	are	desirable.	Especially,
if	 there	 is	 some	 rapid	and	 intuitive	procedure	 to	 test	 either	 the	 result	or	 the	argument,	 it	 should	not	be
overlooked.	Can	you	check	the	result?	Can	you	check	the	argument?

In	order	to	convince	ourselves	of	the	presence	or	of	the	quality	of	an	object,	we	like	to	see	and	to	touch
it.	And	as	we	prefer	perception	 through	 two	different	 senses,	 so	we	prefer	conviction	by	 two	different



proofs:	Can	you	derive	the	result	differently?	We	prefer,	of	course,	a	short	and	intuitive	argument	 to	a
long	and	heavy	one:	Can	you	see	it	at	a	glance?

One	 of	 the	 first	 and	 foremost	 duties	 of	 the	 teacher	 is	 not	 to	 give	 his	 students	 the	 impression	 that
mathematical	problems	have	little	connection	with	each	other,	and	no	connection	at	all	with	anything	else.
We	 have	 a	 natural	 opportunity	 to	 investigate	 the	 connections	 of	 a	 problem	 when	 looking	 back	 at	 its
solution.	The	students	will	find	looking	back	at	the	solution	really	interesting	if	they	have	made	an	honest
effort,	and	have	the	consciousness	of	having	done	well.	Then	they	are	eager	to	see	what	else	they	could
accomplish	 with	 that	 effort,	 and	 how	 they	 could	 do	 equally	 well	 another	 time.	 The	 teacher	 should
encourage	the	students	to	imagine	cases	in	which	they	could	utilize	again	the	procedure	used,	or	apply	the
result	obtained.	Can	you	use	the	result,	or	the	method,	for	some	other	problem?

14.	 Example.	 In	 section	 12,	 the	 students	 finally	 obtained	 the	 solution:	 If	 the	 three	 edges	 of	 a
rectangular	parallelogram,	issued	from	the	same	corner,	are	a,	b,	c,	the	diagonal	is

Can	 you	 check	 the	 result?	 The	 teacher	 cannot	 expect	 a	 good	 answer	 to	 this	 question	 from
inexperienced	students.	The	students,	however,	should	acquire	fairly	early	the	experience	that	problems
“in	letters”	have	a	great	advantage	over	purely	numerical	problems;	if	the	problem	is	given	“in	letters”	its
result	 is	 accessible	 to	 several	 tests	 to	 which	 a	 problem	 “in	 numbers”	 is	 not	 susceptible	 at	 all.	 Our
example,	although	fairly	simple,	is	sufficient	to	show	this.	The	teacher	can	ask	several	questions	about	the
result	which	the	students	may	readily	answer	with	“Yes”;	but	an	answer	“No”	would	show	a	serious	flaw
in	the	result.
“Did	you	use	all	the	data?	Do	all	the	data	a,	b,	c	appear	in	your	formula	for	the	diagonal?”
“Length,	width,	and	height	play	the	same	role	in	our	question;	our	problem	is	symmetric	with	respect	to

a,	b,	c.	Is	the	expression	you	obtained	for	the	diagonal	symmetric	in	a,	b,	c?	Does	 it	 remain	unchanged
when	a,	b,	c	are	interchanged?”

“Our	 problem	 is	 a	 problem	 of	 solid	 geometry:	 to	 find	 the	 diagonal	 of	 a	 parallelepiped	with	 given
dimensions	a,	b,	c.	Our	problem	is	analogous	to	a	problem	of	plane	geometry:	to	find	the	diagonal	of	a
rectangle	with	given	dimensions	a,	b.	 Is	 the	result	of	our	 ‘solid’	problem	analogous	 to	 the	result	of	 the
‘plane’	problem?”

“If	the	height	c	decreases,	and	finally	vanishes,	the	parallelepiped	becomes	a	parallelogram.	If	you	put
c	 =	 0	 in	 your	 formula,	 do	 you	 obtain	 the	 correct	 formula	 for	 the	 diagonal	 of	 the	 rectangular
parallelogram?”

“If	the	height	c	increases,	the	diagonal	increases.	Does	your	formula	show	this?”
“If	all	three	measures	a,	b,	c	of	the	parallelepiped	increase	in	the	same	proportion,	the	diagonal	also

increases	in	the	same	proportion.	If,	in	your	formula,	you	substitute	12a,	12b,	12c	for	a,	b,	c	respectively,
the	expression	of	the	diagonal,	owing	to	this	substitution,	should	also	be	multiplied	by	12.	Is	that	so?”

“If	a,	b,	c	are	measured	in	feet,	your	formula	gives	the	diagonal	measured	in	feet	too;	but	if	you	change
all	measures	into	inches,	the	formula	should	remain	correct.	Is	that	so?”

(The	two	last	questions	are	essentially	equivalent;	see	TEST	BY	DIMENSION.)
These	questions	have	several	good	effects.	First,	an	intelligent	student	cannot	help	being	impressed	by

the	 fact	 that	 the	 formula	 passes	 so	 many	 tests.	 He	 was	 convinced	 before	 that	 the	 formula	 is	 correct
because	he	derived	it	carefully.	But	now	he	is	more	convinced,	and	his	gain	in	confidence	comes	from	a
different	source;	it	is	due	to	a	sort	of	“experimental	evidence.”	Then,	thanks	to	the	foregoing	questions,	the
details	of	 the	 formula	acquire	new	significance,	 and	are	 linked	up	with	various	 facts.	The	 formula	has
therefore	 a	 better	 chance	 of	 being	 remembered,	 the	 knowledge	 of	 the	 student	 is	 consolidated.	 Finally,
these	 questions	 can	 be	 easily	 transferred	 to	 similar	 problems.	 After	 some	 experience	 with	 similar



problems,	 an	 intelligent	 student	 may	 perceive	 the	 underlying	 general	 ideas:	 use	 of	 all	 relevant	 data,
variation	of	the	data,	symmetry,	analogy.	If	he	gets	into	the	habit	of	directing	his	attention	to	such	points,
his	ability	to	solve	problems	may	definitely	profit.
Can	you	check	the	argument?	To	recheck	the	argument	step	by	step	may	be	necessary	in	difficult	and

important	cases.	Usually,	 it	 is	enough	to	pick	out	“touchy”	points	for	rechecking.	In	our	case,	 it	may	be
advisable	to	discuss	retrospectively	the	question	which	was	less	advisable	to	discuss	as	the	solution	was
not	 yet	 attained:	Can	you	prove	 that	 the	 triangle	with	 sides	 x,	 y,	 c	 is	 a	 right	 triangle?	 (See	 the	 end	 of
section	12.)
Can	you	use	the	result	or	the	method	for	some	other	problem?	With	a	little	encouragement,	and	after

one	 or	 two	 examples,	 the	 students	 easily	 find	 applications	 which	 consist	 essentially	 in	 giving	 some
concrete	interpretation	 to	 the	abstract	mathematical	elements	of	 the	problem.	The	 teacher	himself	used
such	 a	 concrete	 interpretation	 as	 he	 took	 the	 room	 in	 which	 the	 discussion	 takes	 place	 for	 the
parallelepiped	of	the	problem.	A	dull	student	may	propose,	as	application,	to	calculate	the	diagonal	of	the
cafeteria	 instead	 of	 the	 diagonal	 of	 the	 classroom.	 If	 the	 students	 do	 not	 volunteer	 more	 imaginative
remarks,	the	teacher	himself	may	put	a	slightly	different	problem,	for	instance:	“Being	given	the	length,	the
width,	 and	 the	 height	 of	 a	 rectangular	 parallelepiped,	 find	 the	 distance	 of	 the	 center	 from	 one	 of	 the
corners.”

The	students	may	use	the	result	of	the	problem	they	just	solved,	observing	that	the	distance	required	is
one	 half	 of	 the	 diagonal	 they	 just	 calculated.	 Or	 they	 may	 use	 the	method,	 introducing	 suitable	 right
triangles	(the	latter	alternative	is	less	obvious	and	somewhat	more	clumsy	in	the	present	case).

After	 this	 application,	 the	 teacher	 may	 discuss	 the	 configuration	 of	 the	 four	 diagonals	 of	 the
parallelepiped,	and	the	six	pyramids	of	which	the	six	faces	are	the	bases,	the	center	the	common	vertex,
and	 the	 semidiagonals	 the	 lateral	 edges.	When	 the	 geometric	 imagination	 of	 the	 students	 is	 sufficiently
enlivened,	the	teacher	should	come	back	to	his	question:	Can	you	use	the	result,	or	the	method,	for	some
other	problem?	Now	there	 is	a	better	chance	 that	 the	students	may	find	some	more	 interesting	concrete
interpretation,	for	instance,	the	following:

“In	 the	center	of	 the	 flat	 rectangular	 top	of	a	building	which	 is	21	yards	 long	and	16	yards	wide,	 a
flagpole	is	to	be	erected,	8	yards	high.	To	support	the	pole,	we	need	four	equal	cables.	The	cables	should
start	from	the	same	point,	2	yards	under	the	top	of	the	pole,	and	end	at	the	four	corners	of	the	top	of	the
building.	How	long	is	each	cable?”

The	students	may	use	the	method	of	the	problem	they	solved	in	detail	introducing	a	right	triangle	in	a
vertical	plane,	and	another	one	in	a	horizontal	plane.	Or	they	may	use	the	result,	imagining	a	rectangular
parallelepiped	of	which	the	diagonal,	x,	is	one	of	the	four	cables	and	the	edges	are

a	=	10.5				b	=	8				c	=	6.

By	straightforward	application	of	the	formula,	x	=	14.5.
For	more	examples,	see	CAN	YOU	USE	THE	RESULT?
15.	Various	approaches.	Let	us	still	retain,	for	a	while,	the	problem	we	considered	in	the	foregoing

sections	8,	 10,	 12,	 14.	The	main	work,	 the	discovery	of	 the	plan,	was	described	 in	 section	10.	Let	 us
observe	that	the	teacher	could	have	proceeded	differently.	Starting	from	the	same	point	as	in	section	10,
he	could	have	followed	a	somewhat	different	line,	asking	the	following	questions:
“Do	you	know	any	related	problem?”
“Do	you	know	an	analogous	problem?”
“You	 see,	 the	 proposed	 problem	 is	 a	 problem	 of	 solid	 geometry.	 Could	 you	 think	 of	 a	 simpler

analogous	problem	of	plane	geometry?”
“You	 see,	 the	 proposed	 problem	 is	 about	 a	 figure	 in	 space,	 it	 is	 concerned	with	 the	 diagonal	 of	 a



rectangular	parallelepiped.	What	might	be	an	analogous	problem	about	a	figure	in	the	plane?	It	should	be
concerned	with—the	diagonal—of—a	rectangular—”

“Parallelogram.”
The	students,	even	if	 they	are	very	slow	and	indifferent,	and	were	not	able	to	guess	anything	before,

are	obliged	finally	to	contribute	at	least	a	minute	part	of	the	idea.	Besides,	if	the	students	are	so	slow,	the
teacher	should	not	take	up	the	present	problem	about	the	parallelepiped	without	having	discussed	before,
in	order	to	prepare	the	students,	the	analogous	problem	about	the	parallelogram.	Then,	he	can	go	on	now
as	follows:
“Here	is	a	problem	related	to	yours	and	solved	before.	Can	you	use	it?”
“Should	you	introduce	some	auxiliary	element	in	order	to	make	its	use	possible?”
Eventually,	 the	 teacher	 may	 succeed	 in	 suggesting	 to	 the	 students	 the	 desirable	 idea.	 It	 consists	 in

conceiving	 the	 diagonal	 of	 the	 given	 parallelepiped	 as	 the	 diagonal	 of	 a	 suitable	 parallelogram	which
must	be	introduced	into	the	figure	(as	intersection	of	the	parallelepiped	with	a	plane	passing	through	two
opposite	edges).	The	idea	is	essentially	the	same	as	before	(section	10)	but	the	approach	is	different.	In
section	10,	the	contact	with	the	available	knowledge	of	the	students	was	established	through	the	unknown;
a	 formerly	solved	problem	was	 recollected	because	 its	unknown	was	 the	same	as	 that	of	 the	proposed
problem.	In	the	present	section	analogy	provides	the	contact	with	the	idea	of	the	solution.

16.	 The	 teacher’s	 method	 of	 questioning	 shown	 in	 the	 foregoing	 sections	 8,	 10,	 12,	 14,	 15	 is
essentially	 this:	Begin	with	 a	 general	 question	 or	 suggestion	 of	 our	 list,	 and,	 if	 necessary,	 come	down
gradually	 to	 more	 specific	 and	 concrete	 questions	 or	 suggestions	 till	 you	 reach	 one	 which	 elicits	 a
response	 in	 the	student’s	mind.	 If	you	have	 to	help	 the	 student	exploit	his	 idea,	 start	again,	 if	possible,
from	a	general	question	or	suggestion	contained	in	the	list,	and	return	again	to	some	more	special	one	if
necessary;	and	so	on.

Of	course,	our	 list	 is	 just	a	 first	 list	of	 this	kind;	 it	seems	 to	be	sufficient	 for	 the	majority	of	simple
cases,	but	there	is	no	doubt	that	it	could	be	perfected.	It	is	important,	however,	that	the	suggestions	from
which	we	start	should	be	simple,	natural,	and	general,	and	that	their	list	should	be	short.

The	suggestions	must	be	simple	and	natural	because	otherwise	they	cannot	be	unobtrusive.
The	 suggestions	must	 be	 general,	 applicable	 not	 only	 to	 the	 present	 problem	but	 to	 problems	of	 all

sorts,	if	they	are	to	help	develop	the	ability	of	the	student	and	not	just	a	special	technique.
The	 list	 must	 be	 short	 in	 order	 that	 the	 questions	 may	 be	 often	 repeated,	 unartificially,	 and	 under

varying	circumstances;	thus,	there	is	a	chance	that	they	will	be	eventually	assimilated	by	the	student	and
will	contribute	to	the	development	of	a	mental	habit.

It	is	necessary	to	come	down	gradually	to	specific	suggestions,	in	order	that	the	student	may	have	as
great	a	share	of	the	work	as	possible.

This	 method	 of	 questioning	 is	 not	 a	 rigid	 one;	 fortunately	 so,	 because,	 in	 these	 matters,	 any	 rigid,
mechanical,	pedantical	procedure	is	necessarily	bad.	Our	method	admits	a	certain	elasticity	and	variation,
it	admits	various	approaches	(section	15),	it	can	be	and	should	be	so	applied	that	questions	asked	by	the
teacher	could	have	occurred	to	the	student	himself.

If	 a	 reader	wishes	 to	 try	 the	method	here	 proposed	 in	 his	 class	 he	 should,	 of	 course,	 proceed	with
caution.	He	 should	 study	 carefully	 the	 example	 introduced	 in	 section	8,	 and	 the	 following	 examples	 in
sections	18,	19,	20.	He	should	prepare	carefully	the	examples	which	he	intends	to	discuss,	considering
also	various	approaches.	He	should	start	with	a	few	trials	and	find	out	gradually	how	he	can	manage	the
method,	how	the	students	take	it,	and	how	much	time	it	takes.

17.	 Good	 questions	 and	 bad	 questions.	 If	 the	 method	 of	 questioning	 formulated	 in	 the	 foregoing
section	is	well	understood	it	helps	to	judge,	by	comparison,	the	quality	of	certain	suggestions	which	may
be	offered	with	the	intention	of	helping	the	students.



Let	us	go	back	to	the	situation	as	it	presented	itself	at	 the	beginning	of	section	10	when	the	question
was	asked:	Do	you	know	a	related	problem?	Instead	of	this,	with	the	best	intention	to	help	the	students,
the	question	may	be	offered:	Could	you	apply	the	theorem	of	Pythagoras?

The	intention	may	be	the	best,	but	the	question	is	about	the	worst.	We	must	realize	in	what	situation	it
was	offered;	then	we	shall	see	that	there	is	a	long	sequence	of	objections	against	that	sort	of	“help.”

(1)	If	the	student	is	near	to	the	solution,	he	may	understand	the	suggestion	implied	by	the	question;	but
if	 he	 is	 not,	 he	 quite	 possibly	will	 not	 see	 at	 all	 the	 point	 at	 which	 the	 question	 is	 driving.	 Thus	 the
question	fails	to	help	where	help	is	most	needed.

(2)	If	the	suggestion	is	understood,	it	gives	the	whole	secret	away,	very	little	remains	for	the	student	to
do.

(3)	The	 suggestion	 is	 of	 too	 special	 a	 nature.	 Even	 if	 the	 student	 can	make	 use	 of	 it	 in	 solving	 the
present	problem,	nothing	is	learned	for	future	problems.	The	question	is	not	instructive.

(4)	Even	if	he	understands	the	suggestion,	the	student	can	scarcely	understand	how	the	teacher	came	to
the	 idea	of	putting	 such	a	question.	And	how	could	he,	 the	 student,	 find	 such	a	question	by	himself?	 It
appears	as	an	unnatural	surprise,	as	a	rabbit	pulled	out	of	a	hat;	it	is	really	not	instructive.

None	of	these	objections	can	be	raised	against	the	procedure	described	in	section	10,	or	against	that	in
section	15.

MORE	EXAMPLES
18.	A	problem	of	construction.	 Inscribe	a	 square	 in	a	given	 triangle.	Two	vertices	of	 the	 square

should	be	on	the	base	of	the	triangle,	the	two	other	vertices	of	the	square	on	the	two	other	sides	of	the
triangle,	one	on	each.
“What	is	the	unknown?”
“A	square.”
“What	are	the	data?”
“A	triangle	is	given,	nothing	else.”
“What	is	the	condition?”
“The	four	corners	of	the	square	should	be	on	the	perimeter	of	the	triangle,	two	corners	on	the	base,	one

corner	on	each	of	the	other	two	sides.”
“Is	it	possible	to	satisfy	the	condition?”
“I	think	so.	I	am	not	so	sure.”
“You	do	not	seem	to	find	the	problem	too	easy.	If	you	cannot	solve	the	proposed	problem,	try	to	solve

first	some	related	problem.	Could	you	satisfy	a	part	of	the	condition?”
“What	do	you	mean	by	a	part	of	the	condition?”
“You	see,	the	condition	is	concerned	with	all	the	vertices	of	the	square.	How	many	vertices	are	there?”
“Four.”
“A	part	 of	 the	 condition	would	be	 concerned	with	 less	 than	 four	 vertices.	Keep	 only	 a	 part	 of	 the

condition,	drop	the	other	part.	What	part	of	the	condition	is	easy	to	satisfy?”
“It	is	easy	to	draw	a	square	with	two	vertices	on	the	perimeter	of	the	triangle—or	even	one	with	three

vertices	on	the	perimeter!”
“Draw	a	figure!”
The	student	draws	Fig.	2.
“You	kept	only	a	part	of	the	condition,	and	you	dropped	the	other	part.	How	far	is	the	unknown	now

determined?”



FIG.	2

“The	square	is	not	determined	if	it	has	only	three	vertices	on	the	perimeter	of	the	triangle.”
“Good!	Draw	a	figure.”
The	student	draws	Fig.	3.

FIG.	3

“The	square,	as	you	said,	is	not	determined	by	the	part	of	the	condition	you	kept.	How	can	it	vary?”
.	.	.	.	.
“Three	corners	of	your	square	are	on	the	perimeter	of	the	triangle	but	the	fourth	corner	is	not	yet	there

where	it	should	be.	Your	square,	as	you	said,	is	undetermined,	it	can	vary;	the	same	is	true	of	its	fourth
corner.	How	can	it	vary?”

.	.	.	.	.
“Try	it	experimentally,	if	you	wish.	Draw	more	squares	with	three	corners	on	the	perimeter	in	the	same

way	as	the	two	squares	already	in	the	figure.	Draw	small	squares	and	large	squares.	What	seems	to	be	the
locus	of	the	fourth	corner?	How	can	it	vary?”

The	teacher	brought	the	student	very	near	to	the	idea	of	the	solution.	If	the	student	is	able	to	guess	that
the	locus	of	the	fourth	corner	is	a	straight	line,	he	has	got	it.

19.	A	problem	to	prove.	Two	angles	are	in	different	planes	but	each	side	of	one	is	parallel	to	the
corresponding	side	of	the	other,	and	has	also	the	same	direction.	Prove	that	such	angles	are	equal.

What	we	have	to	prove	is	a	fundamental	theorem	of	solid	geometry.	The	problem	may	be	proposed	to
students	who	 are	 familiar	with	 plane	 geometry	 and	 acquainted	with	 those	 few	 facts	 of	 solid	 geometry
which	prepare	the	present	theorem	in	Euclid’s	Elements.	(The	theorem	that	we	have	stated	and	are	going
to	prove	is	the	proposition	10	of	Book	XI	of	Euclid.)	Not	only	questions	and	suggestions	quoted	from	our
list	are	printed	in	italics	but	also	others	which	correspond	to	them	as	“problems	to	prove”	correspond	to



“problems	to	find.”	(The	correspondence	is	worked	out	systematically	in	PROBLEMS	TO	FIND,	PROBLEMS	TO
PROVE	5,	6.)
“What	is	the	hypothesis?”
“Two	angles	are	in	different	planes.	Each	side	of	one	is	parallel	to	the	corresponding	side	of	the	other,

and	has	also	the	same	direction.
“What	is	the	conclusion?”
“The	angles	are	equal.”
“Draw	a	figure.	Introduce	suitable	notation.”
The	student	draws	the	lines	of	Fig.	4	and	chooses,	helped	more	or	less	by	the	teacher,	the	letters	as	in

Fig.	4.
“What	is	the	hypothesis?	Say	it,	please,	using	your	notation.”
“A,	B,	C	 are	 not	 in	 the	 same	 plane	 as	A′,	 B′,	 C′.	 And	AB	 ||	A′B′,	 AC	 ||	A′C′.	 Also	AB	 has	 the	 same

direction	as	A′B′,	and	AC	the	same	as	A′C′.”

FIG.	4

“What	is	the	conclusion?”
“∠BAC	=	∠B′A′C′.”
“Look	 at	 the	 conclusion!	 And	 try	 to	 think	 of	 a	 familiar	 theorem	 having	 the	 same	 or	 a	 similar

conclusion.”
“If	two	triangles	are	congruent,	the	corresponding	angles	are	equal.”
“Very	good!	Now	here	is	a	theorem	related	to	yours	and	proved	before.	Could	you	use	it?”
“I	think	so	but	I	do	not	see	yet	quite	how.”
“Should	you	introduce	some	auxiliary	element	in	order	to	make	its	use	possible?”
.	.	.	.	.
“Well,	 the	 theorem	which	you	quoted	so	well	 is	about	 triangles,	about	a	pair	of	congruent	 triangles.

Have	you	any	triangles	in	your	figure?”
“No.	But	I	could	introduce	some.	Let	me	join	B	to	C,	and	B′	to	C′.	Then	there	are	two	triangles,	Δ	ABC,

Δ	A′B′C′.”
“Well	done.	But	what	are	these	triangles	good	for?”



“To	prove	the	conclusion,	∠BAC	=	∠B′A′C′.”
“Good!	If	you	wish	to	prove	this,	what	kind	of	triangles	do	you	need?”

FIG.	5

“Congruent	triangles.	Yes,	of	course,	I	may	choose	B,	C,	B′,	C′	so	that

AB	=	A′B′,	AC	=	A′C′.”

“Very	good!	Now,	what	do	you	wish	to	prove?”
“I	wish	to	prove	that	the	triangles	are	congruent,

Δ	ABC	=	Δ	A′B′C′.

If	I	could	prove	this,	the	conclusion	∠BAC	=	∠B′A′C′	would	follow	immediately.”
“Fine!	You	have	a	new	aim,	you	aim	at	a	new	conclusion.	Look	at	the	conclusion!	And	try	to	think	of

a	familiar	theorem	having	the	same	or	a	similar	conclusion.”
“Two	triangles	are	congruent	if—if	the	three	sides	of	the	one	are	equal	respectively	to	the	three	sides

of	the	other.”
“Well	done.	You	could	have	chosen	a	worse	one.	Now	here	is	a	theorem	related	to	yours	and	proved

before.	Could	you	use	it?”
“I	could	use	it	if	I	knew	that	BC	=	B′C′.”
“That	is	right!	Thus,	what	is	your	aim?”
“To	prove	that	BC	=	B′C′.”
“Try	to	think	of	a	familiar	theorem	having	the	same	or	a	similar	conclusion.”
“Yes,	I	know	a	theorem	finishing:	‘.	.	.	then	the	two	lines	are	equal.’	But	it	does	not	fit	in.”
“Should	you	introduce	some	auxiliary	element	in	order	to	make	its	use	possible?”
.	.	.	.	.
“You	see,	how	could	you	prove	BC	=	B′C′	when	there	is	no	connection	in	the	figure	between	BC	and	B

′C′?”
“Did	you	use	the	hypothesis?	What	is	the	hypothesis?”



“We	suppose	that	AB	||	A′B′,	AC	||	A′C′.	Yes,	of	course,	I	must	use	that.”
“Did	 you	 use	 the	whole	 hypothesis?	 You	 say	 that	AB	 ||	A′B′.	 Is	 that	 all	 that	 you	 know	 about	 these

lines?”
“No;	AB	is	also	equal	to	A′B′,	by	construction.	They	are	parallel	and	equal	to	each	other.	And	so	are

AC	and	A′C′.”
“Two	parallel	lines	of	equal	length—it	is	an	interesting	configuration.	Have	you	seen	it	before?”
“Of	course!	Yes!	Parallelogram!	Let	me	join	A	to	A′,	B	to	B′,	and	C	to	C′.”
“The	idea	is	not	so	bad.	How	many	parallelograms	have	you	now	in	your	figure?”
“Two.	No,	 three.	No,	 two.	 I	mean,	 there	are	 two	of	which	you	can	prove	 immediately	 that	 they	 are

parallelograms.	There	is	a	third	which	seems	to	be	a	parallelogram;	I	hope	I	can	prove	that	it	is	one.	And
then	the	proof	will	be	finished!”

We	could	have	gathered	 from	his	 foregoing	answers	 that	 the	 student	 is	 intelligent.	But	after	 this	 last
remark	of	his,	there	is	no	doubt.

This	student	is	able	to	guess	a	mathematical	result	and	to	distinguish	clearly	between	proof	and	guess.
He	 knows	 also	 that	 guesses	 can	 be	 more	 or	 less	 plausible.	 Really,	 he	 did	 profit	 something	 from	 his
mathematics	 classes;	 he	 has	 some	 real	 experience	 in	 solving	 problems,	 he	 can	 conceive	 and	 exploit	 a
good	idea.

20.	A	rate	problem.	Water	is	flowing	into	a	conical	vessel	at	the	rate	r.	The	vessel	has	the	shape	of
a	right	circular	cone,	with	horizontal	base,	the	vertex	pointing	downwards;	the	radius	of	the	base	is	a,
the	altitude	of	the	cone	b.	Find	the	rate	at	which	the	surface	is	rising	when	the	depth	of	the	water	is	y.
Finally,	obtain	the	numerical	value	of	the	unknown	supposing	that	a	=	4	ft.,	b	=	3	ft.,	r	=	2	cu.	ft.	per
minute,	and	y	=	1	ft.

FIG.	6

The	 students	 are	 supposed	 to	 know	 the	 simplest	 rules	 of	 differentiation	 and	 the	 notion	 of	 “rate	 of
change.”
“What	are	the	data?”
“The	radius	of	 the	base	of	 the	cone	a	=	4	ft.,	 the	altitude	of	 the	cone	b	=	3	 ft.,	 the	 rate	at	which	 the

water	is	flowing	into	the	vessel	r	=	2	cu.	ft.	per	minute,	and	the	depth	of	the	water	at	a	certain	moment,	y	=
1	ft.”

“Correct.	The	statement	of	the	problem	seems	to	suggest	that	you	should	disregard,	provisionally,	the
numerical	values,	work	with	the	letters,	express	the	unknown	in	terms	of	a,	b,	r,	y	and	only	finally,	after
having	obtained	the	expression	of	the	unknown	in	letters,	substitute	the	numerical	values.	I	would	follow



this	suggestion.	Now,	what	is	the	unknown?”
“The	rate	at	which	the	surface	is	rising	when	the	depth	of	the	water	is	y.”
“What	is	that?	Could	you	say	it	in	other	terms?”
“The	rate	at	which	the	depth	of	the	water	is	increasing.”
“What	is	that?	Could	you	restate	it	still	differently?”
“The	rate	of	change	of	the	depth	of	the	water.”
“That	is	right,	the	rate	of	change	of	y.	But	what	is	the	rate	of	change?	Go	back	to	the	definition.”
“The	derivative	is	the	rate	of	change	of	a	function.”
“Correct.	Now,	is	y	a	 function?	As	we	said	before,	we	disregard	 the	numerical	value	of	y.	Can	you

imagine	that	y	changes?”
“Yes,	y,	the	depth	of	the	water,	increases	as	the	time	goes	by.”
“Thus,	y	is	a	function	of	what?”
“Of	the	time	t.”
“Good.	Introduce	suitable	notation.	How	would	you	write	the	‘rate	of	change	of	y’	 in	mathematical

symbols?”

“Good.	Thus,	 this	 is	your	unknown.	You	have	to	express	it	 in	terms	of	a,	b,	r,	y.	By	 the	way,	one	of
these	data	is	a	‘rate.’	Which	one?”
“r	is	the	rate	at	which	water	is	flowing	into	the	vessel.”
“What	is	that?	Could	you	say	it	in	other	terms?”
“r	is	the	rate	of	change	of	the	volume	of	the	water	in	the	vessel.”
“What	is	that?	Could	you	restate	it	still	differently?	How	would	you	write	it	in	suitable	notation?”

“What	is	V?”
“The	volume	of	the	water	in	the	vessel	at	the	time	t.”

“Good.	Thus,	you	have	to	express	 	in	terms	of	a,	b,	 ,	y.	How	will	you	do	it?”

.	.	.	.	.
“If	you	cannot	solve	the	proposed	problem	try	to	solve	first	some	related	problem.	If	you	do	not	see

yet	the	connection	between	 	and	the	data,	try	to	bring	in	some	simpler	connection	that	could	serve	as	a

stepping	stone.”
.	.	.	.	.
“Do	you	not	see	that	there	are	other	connections?	For	instance,	are	y	and	V	independent	of	each	other?”
“No.	When	y	increases,	V	must	increase	too.”
“Thus,	there	is	a	connection.	What	is	the	connection?”
“Well,	V	 is	 the	volume	of	a	cone	of	which	 the	altitude	 is	y.	But	 I	do	not	know	yet	 the	 radius	of	 the

base.”
“You	may	consider	it,	nevertheless.	Call	it	something,	say	x.”



“Correct.	Now,	what	about	x?	Is	it	independent	of	y?”
“No.	When	the	depth	of	the	water,	y,	increases	the	radius	of	the	free	surface,	x,	increases	too.”
“Thus,	there	is	a	connection.	What	is	the	connection?”
“Of	course,	similar	triangles.

x	:	y	=	a	:	b.”

“One	more	connection,	you	see.	I	would	not	miss	profiting	from	it.	Do	not	forget,	you	wished	to	know
the	connection	between	V	and	y.”

“I	have

“Very	good.	This	looks	like	a	stepping	stone,	does	it	not?	But	you	should	not	forget	your	goal.	What	is
the	unknown?”

“Well,	 .”

“You	 have	 to	 find	 a	 connection	 between	 ,	 ,	 and	 other	 quantities.	 And	 here	 you	 have	 one

between	y,	V,	and	other	quantities.	What	to	do?”
“Differentiate!	Of	course!

Here	it	is.”
“Fine!	And	what	about	the	numerical	values?”

“If	a	=	4,	b	=	3,	 	=	r	=	2,	y	=	1,	then



PART	II.	HOW	TO	SOLVE	IT	A	DIALOGUE

Getting	Acquainted

Where	should	I	start?	Start	from	the	statement	of	the	problem.
What	can	I	do?	Visualize	the	problem	as	a	whole	as	clearly	and	as	vividly	as	you	can.	Do	not	concern

yourself	with	details	for	the	moment.
What	can	I	gain	by	doing	so?	You	should	understand	the	problem,	familiarize	yourself	with	it,	impress

its	purpose	on	your	mind.	The	attention	bestowed	on	 the	problem	may	also	stimulate	your	memory	and
prepare	for	the	recollection	of	relevant	points.

Working	for	Better	Understanding
Where	should	I	start?	Start	again	from	the	statement	of	 the	problem.	Start	when	 this	statement	 is	so

clear	to	you	and	so	well	impressed	on	your	mind	that	you	may	lose	sight	of	it	for	a	while	without	fear	of
losing	it	altogether.
What	can	I	do?	Isolate	the	principal	parts	of	your	problem.	The	hypothesis	and	the	conclusion	are	the

principal	parts	of	a	“problem	to	prove”;	the	unknown,	the	data,	and	the	conditions	are	the	principal	parts
of	 a	 “problem	 to	 find.”	 Go	 through	 the	 principal	 parts	 of	 your	 problem,	 consider	 them	 one	 by	 one,
consider	 them	 in	 turn,	 consider	 them	 in	 various	 combinations,	 relating	 each	 detail	 to	 other	 details	 and
each	to	the	whole	of	the	problem.
What	can	I	gain	by	doing	so?	You	should	prepare	and	clarify	details	which	are	likely	to	play	a	role

afterwards.

Hunting	for	the	Helpful	Idea
Where	should	I	start?	Start	from	the	consideration	of	the	principal	parts	of	your	problem.	Start	when

these	 principal	 parts	 are	 distinctly	 arranged	 and	 clearly	 conceived,	 thanks	 to	 your	 previous	work,	 and
when	your	memory	seems	responsive.
What	 can	 I	 do?	 Consider	 your	 problem	 from	 various	 sides	 and	 seek	 contacts	 with	 your	 formerly

acquired	knowledge.
Consider	 your	 problem	 from	 various	 sides.	 Emphasize	 different	 parts,	 examine	 different	 details,

examine	the	same	details	repeatedly	but	in	different	ways,	combine	the	details	differently,	approach	them
from	different	sides.	Try	to	see	some	new	meaning	in	each	detail,	some	new	interpretation	of	the	whole.

Seek	 contacts	 with	 your	 formerly	 acquired	 knowledge.	 Try	 to	 think	 of	 what	 helped	 you	 in	 similar
situations	in	the	past.	Try	to	recognize	something	familiar	in	what	you	examine,	try	to	perceive	something
useful	in	what	you	recognize.
What	could	I	perceive?	A	helpful	idea,	perhaps	a	decisive	idea	that	shows	you	at	a	glance	the	way	to

the	very	end.
How	can	an	idea	be	helpful?	It	shows	you	the	whole	of	the	way	or	a	part	of	the	way;	it	suggests	to	you



more	or	less	distinctly	how	you	can	proceed.	Ideas	are	more	or	less	complete.	You	are	lucky	if	you	have
any	idea	at	all.
What	can	I	do	with	an	incomplete	idea?	You	should	consider	it.	If	it	looks	advantageous	you	should

consider	 it	 longer.	 If	 it	 looks	 reliable	 you	 should	 ascertain	 how	 far	 it	 leads	 you,	 and	 reconsider	 the
situation.	The	situation	has	changed,	thanks	to	your	helpful	idea.	Consider	the	new	situation	from	various
sides	and	seek	contacts	with	your	formerly	acquired	knowledge.
What	can	I	gain	by	doing	so	again?	You	may	be	lucky	and	have	another	idea.	Perhaps	your	next	idea

will	lead	you	to	the	solution	right	away.	Perhaps	you	need	a	few	more	helpful	ideas	after	the	next.	Perhaps
you	will	be	led	astray	by	some	of	your	ideas.	Nevertheless	you	should	be	grateful	for	all	new	ideas,	also
for	the	lesser	ones,	also	for	the	hazy	ones,	also	for	the	supplementary	ideas	adding	some	precision	to	a
hazy	one,	or	attempting	 the	correction	of	a	 less	 fortunate	one.	Even	 if	you	do	not	have	any	appreciable
new	ideas	for	a	while	you	should	be	grateful	if	your	conception	of	the	problem	becomes	more	complete
or	more	coherent,	more	homogeneous	or	better	balanced.

Carrying	Out	the	Plan
Where	should	I	start?	Start	from	the	lucky	idea	that	led	you	to	the	solution.	Start	when	you	feel	sure	of

your	grasp	of	the	main	connection	and	you	feel	confident	that	you	can	supply	the	minor	details	that	may	be
wanting.
What	can	I	do?	Make	your	grasp	quite	secure.	Carry	through	in	detail	all	the	algebraic	or	geometric

operations	which	 you	 have	 recognized	 previously	 as	 feasible.	Convince	 yourself	 of	 the	 correctness	 of
each	step	by	formal	reasoning,	or	by	 intuitive	 insight,	or	both	ways	 if	you	can.	 If	your	problem	is	very
complex	you	may	distinguish	“great”	steps	and	“small”	steps,	each	great	step	being	composed	of	several
small	ones.	Check	first	the	great	steps,	and	get	down	to	the	smaller	ones	afterwards.
What	 can	 I	 gain	by	doing	 so?	A	presentation	of	 the	 solution	 each	 step	of	which	 is	 correct	 beyond

doubt.

Looking	Back
Where	should	I	start?	From	the	solution,	complete	and	correct	in	each	detail.
What	 can	 I	 do?	 Consider	 the	 solution	 from	 various	 sides	 and	 seek	 contacts	 with	 your	 formerly

acquired	knowledge.
Consider	the	details	of	the	solution	and	try	to	make	them	as	simple	as	you	can;	survey	more	extensive

parts	of	the	solution	and	try	to	make	them	shorter;	try	to	see	the	whole	solution	at	a	glance.	Try	to	modify
to	 their	advantage	smaller	or	 larger	parts	of	 the	solution,	 try	 to	 improve	 the	whole	solution,	 to	make	 it
intuitive,	 to	fit	 it	 into	your	formerly	acquired	knowledge	as	naturally	as	possible.	Scrutinize	the	method
that	led	you	to	the	solution,	try	to	see	its	point,	and	try	to	make	use	of	it	for	other	problems.	Scrutinize	the
result	and	try	to	make	use	of	it	for	other	problems.
What	can	 I	gain	by	doing	so?	You	may	 find	a	new	and	better	 solution,	you	may	discover	new	and

interesting	facts.	In	any	case,	if	you	get	into	the	habit	of	surveying	and	scrutinizing	your	solutions	in	this
way,	you	will	acquire	some	knowledge	well	ordered	and	ready	to	use,	and	you	will	develop	your	ability
of	solving	problems.



PART	III.	SHORT	DICTIONARY	OF	HEURISTIC

Analogy	 is	 a	 sort	 of	 similarity.	 Similar	 objects	 agree	 with	 each	 other	 in	 some	 respect,	 analogous
objects	agree	in	certain	relations	of	their	respective	parts.

1.	 A	 rectangular	 parallelogram	 is	 analogous	 to	 a	 rectangular	 parallelepiped.	 In	 fact,	 the	 relations
between	the	sides	of	the	parallelogram	are	similar	to	those	between	the	faces	of	the	parallelepiped:

Each	side	of	the	parallelogram	is	parallel	to	just	one	other	side,	and	is	perpendicular	to	the	remaining
sides.

Each	face	of	the	parallelepiped	is	parallel	to	just	one	other	face,	and	is	perpendicular	to	the	remaining
faces.

Let	us	agree	to	call	a	side	a	“bounding	element”	of	the	parallelogram	and	a	face	a	“bounding	element”
of	the	parallelepiped.	Then,	we	may	contract	the	two	foregoing	statements	into	one	that	applies	equally	to
both	figures:

Each	 bounding	 element	 is	 parallel	 to	 just	 one	 other	 bounding	 element	 and	 is	 perpendicular	 to	 the
remaining	bounding	elements.

Thus,	 we	 have	 expressed	 certain	 relations	 which	 are	 common	 to	 the	 two	 systems	 of	 objects	 we
compared,	sides	of	the	rectangle	and	faces	of	the	rectangular	parallelepiped.	The	analogy	of	these	systems
consists	in	this	community	of	relations.

2.	 Analogy	 pervades	 all	 our	 thinking,	 our	 everyday	 speech	 and	 our	 trivial	 conclusions	 as	 well	 as
artistic	ways	 of	 expression	 and	 the	 highest	 scientific	 achievements.	Analogy	 is	 used	 on	 very	 different
levels.	People	often	use	vague,	ambiguous,	incomplete,	or	incompletely	clarified	analogies,	but	analogy
may	reach	the	level	of	mathematical	precision.	All	sorts	of	analogy	may	play	a	role	in	the	discovery	of	the
solution	and	so	we	should	not	neglect	any	sort.

3.	We	may	 consider	 ourselves	 lucky	when,	 trying	 to	 solve	 a	 problem,	we	 succeed	 in	 discovering	 a
simpler	analogous	problem.	 In	section	15,	our	original	problem	was	concerned	with	 the	diagonal	of	a
rectangular	 parallelepiped;	 the	 consideration	 of	 a	 simpler	 analogous	 problem,	 concerned	 with	 the
diagonal	of	a	rectangle,	led	us	to	the	solution	of	the	original	problem.	We	are	going	to	discuss	one	more
case	of	the	same	sort.	We	have	to	solve	the	following	problem:
Find	the	center	of	gravity	of	a	homogeneous	tetrahedron.
Without	knowledge	of	the	integral	calculus,	and	with	little	knowledge	of	physics,	this	problem	is	not

easy	at	all;	it	was	a	serious	scientific	problem	in	the	days	of	Archimedes	or	Galileo.	Thus,	if	we	wish	to
solve	it	with	as	little	preliminary	knowledge	as	possible,	we	should	look	around	for	a	simpler	analogous
problem.	The	corresponding	problem	in	the	plane	occurs	here	naturally:
Find	the	center	of	gravity	of	a	homogeneous	triangle.
Now,	we	have	two	questions	instead	of	one.	But	two	questions	may	be	easier	to	answer	than	just	one

question—provided	that	the	two	questions	are	intelligently	connected.
4.	Laying	aside,	for	the	moment,	our	original	problem	concerning	the	tetrahedron,	we	concentrate	upon

the	 simpler	 analogous	 problem	 concerning	 the	 triangle.	 To	 solve	 this	 problem,	 we	 have	 to	 know
something	about	centers	of	gravity.	The	following	principle	is	plausible	and	presents	itself	naturally.



If	a	system	of	masses	S	consists	of	parts,	each	of	which	has	its	center	of	gravity	in	the	same	plane,
then	this	plane	contains	also	the	center	of	gravity	of	the	whole	system	S.

This	 principle	 yields	 all	 that	we	need	 in	 the	 case	 of	 the	 triangle.	First,	 it	 implies	 that	 the	 center	 of
gravity	of	the	triangle	lies	in	the	plane	of	the	triangle.	Then,	we	may	consider	the	triangle	as	consisting	of
fibers	(thin	strips,	“infinitely	narrow”	parallelograms)	parallel	to	a	certain	side	of	the	triangle	(the	side
AB	in	Fig.	7).	The	center	of	gravity	of	each	fiber	(of	any	parallelogram)	is,	obviously,	its	midpoint,	and
all	these	midpoints	lie	on	the	line	joining	the	vertex	C	opposite	to	the	side	AB	to	the	midpoint	M	of	AB
(see	Fig.	7).

FIG.	7

Any	plane	passing	through	the	median	CM	of	the	triangle	contains	the	centers	of	gravity	of	all	parallel
fibers	which	constitute	 the	 triangle.	Thus,	we	are	 led	 to	 the	conclusion	 that	 the	center	of	gravity	of	 the
whole	triangle	lies	on	the	same	median.	Yet	it	must	lie	on	the	other	two	medians	just	as	well,	it	must	be
the	common	point	of	intersection	of	all	three	medians.

It	 is	desirable	to	verify	now	by	pure	geometry,	 independently	of	any	mechanical	assumption,	that	 the
three	medians	meet	in	the	same	point.

5.	 After	 the	 case	 of	 the	 triangle,	 the	 case	 of	 the	 tetrahedron	 is	 fairly	 easy.	We	 have	 now	 solved	 a
problem	analogous	to	our	proposed	problem	and,	having	solved	it,	we	have	a	model	to	follow.

In	solving	 the	analogous	problem	which	we	use	now	as	a	model,	we	conceived	 the	 triangle	ABC	as
consisting	of	fibers	parallel	to	one	of	its	sides,	AB.	Now,	we	conceive	the	tetrahedron	ABCD	as	consisting
of	fibers	parallel	to	one	of	its	edges,	AB.

The	midpoints	of	the	fibers	which	constitute	the	triangle	lie	all	on	the	same	straight	line,	a	median	of
the	triangle,	joining	the	midpoint	M	of	the	side	AB	to	the	opposite	vertex	C.	The	midpoints	of	the	fibers
which	constitute	 the	 tetrahedron	lie	all	 in	 the	same	plane,	 joining	the	midpoint	M	of	 the	edge	AB	 to	 the
opposite	edge	CD	(see	Fig.	8);	we	may	call	this	plane	MCD	a	median	plane	of	the	tetrahedron.



FIG.	8

In	the	case	of	the	triangle,	we	had	three	medians	like	MC,	each	of	which	has	to	contain	the	center	of
gravity	of	the	triangle.	Therefore,	these	three	medians	must	meet	in	one	point	which	is	precisely	the	center
of	gravity.	In	the	case	of	 the	 tetrahedron	we	have	six	median	planes	 like	MCD,	 joining	 the	midpoint	of
some	 edge	 to	 the	 opposite	 edge,	 each	 of	which	 has	 to	 contain	 the	 center	 of	 gravity	 of	 the	 tetrahedron.
Therefore,	these	six	median	planes	must	meet	in	one	point	which	is	precisely	the	center	of	gravity.

6.	 Thus,	 we	 have	 solved	 the	 problem	 of	 the	 center	 of	 gravity	 of	 the	 homogeneous	 tetrahedron.	 To
complete	 our	 solution,	 it	 is	 desirable	 to	 verify	 now	 by	 pure	 geometry,	 independently	 of	 mechanical
considerations,	that	the	six	median	planes	mentioned	pass	through	the	same	point.

When	we	had	 solved	 the	problem	of	 the	 center	of	gravity	of	 the	homogeneous	 triangle,	we	 found	 it
desirable	to	verify,	in	order	to	complete	our	solution,	that	the	three	medians	of	the	triangle	pass	through
the	same	point.	This	problem	is	analogous	to	the	foregoing	but	visibly	simpler.

Again	we	may	use,	in	solving	the	problem	concerning	the	tetrahedron,	the	simpler	analogous	problem
concerning	the	triangle	(which	we	may	suppose	here	as	solved).	In	fact,	consider	the	three	median	planes,
passing	 through	 the	 three	 edges	DA,	 DB,	 DC	 issued	 from	 the	 vertex	D;	 each	 passes	 also	 through	 the
midpoint	of	the	opposite	edge	(the	median	plane	through	DC	passes	through	M,	see	Fig.	8).	Now,	 these
three	 median	 planes	 intersect	 the	 plane	 of	 Δ	 ABC	 in	 the	 three	 medians	 of	 this	 triangle.	 These	 three
medians	pass	through	the	same	point	(this	is	the	result	of	the	simpler	analogous	problem)	and	this	point,
just	as	D,	is	a	common	point	of	the	three	median	planes.	The	straight	line,	joining	the	two	common	points,
is	common	to	all	three	median	planes.

We	proved	that	those	3	among	the	6	median	planes	which	pass	through	the	vertex	D	have	a	common
straight	 line.	The	 same	must	be	 true	of	 those	3	median	planes	which	pass	 through	A;	 and	 also	of	 the	3
median	planes	through	B;	and	also	of	the	3	through	C.	Connecting	these	facts	suitably,	we	may	prove	that
the	 6	median	 planes	 have	 a	 common	point.	 (The	 3	median	 planes	 passing	 through	 the	 sides	 of	Δ	ABC
determine	a	common	point,	and	3	lines	of	intersection	which	meet	in	the	common	point.	Now,	by	what	we
have	just	proved,	through	each	line	of	intersection	one	more	median	plane	must	pass.)

7.	Both	under	5	and	under	6	we	used	a	simpler	analogous	problem,	concerning	the	triangle,	to	solve	a
problem	about	the	tetrahedron.	Yet	the	two	cases	are	different	in	an	important	respect.	Under	5,	we	used
the	method	 of	 the	 simpler	 analogous	problem	whose	 solution	we	 imitated	point	by	point.	Under	6,	we
used	the	result	of	the	simpler	analogous	problem,	and	we	did	not	care	how	this	result	had	been	obtained.



Sometimes,	we	may	be	able	 to	use	both	 the	method	and	 the	 result	 of	 the	 simpler	 analogous	problem.
Even	our	foregoing	example	shows	this	if	we	regard	the	considerations	under	5	and	6	as	different	parts	of
the	solution	of	the	same	problem.

Our	 example	 is	 typical.	 In	 solving	 a	 proposed	 problem,	we	 can	 often	 use	 the	 solution	 of	 a	 simpler
analogous	problem;	we	may	be	able	to	use	its	method,	or	its	result,	or	both.	Of	course,	in	more	difficult
cases,	complications	may	arise	which	are	not	yet	shown	by	our	example.	Especially,	it	can	happen	that	the
solution	of	the	analogous	problem	cannot	be	immediately	used	for	our	original	problem.	Then,	it	may	be
worth	while	to	reconsider	the	solution,	to	vary	and	to	modify	it	till,	after	having	tried	various	forms	of	the
solution,	we	find	eventually	one	that	can	be	extended	to	our	original	problem.

8.	 It	 is	desirable	 to	 foresee	 the	 result,	 or,	 at	 least,	 some	 features	of	 the	 result,	with	 some	degree	of
plausibility.	Such	plausible	forecasts	are	often	based	on	analogy.

Thus,	we	may	know	that	the	center	of	gravity	of	a	homogeneous	triangle	coincides	with	the	center	of
gravity	of	its	three	vertices	(that	is,	of	three	material	points	with	equal	masses,	placed	in	the	vertices	of
the	 triangle).	Knowing	 this,	we	may	conjecture	 that	 the	center	of	gravity	of	a	homogeneous	 tetrahedron
coincides	with	the	center	of	gravity	of	its	four	vertices.

This	conjecture	is	an	“inference	by	analogy.”	Knowing	that	the	triangle	and	the	tetrahedron	are	alike	in
many	respects,	we	conjecture	 that	 they	are	alike	 in	one	more	respect.	 It	would	be	foolish	 to	 regard	 the
plausibility	 of	 such	 conjectures	 as	 certainty,	 but	 it	 would	 be	 just	 as	 foolish,	 or	 even	more	 foolish,	 to
disregard	such	plausible	conjectures.

Inference	by	analogy	appears	 to	be	 the	most	common	kind	of	conclusion,	and	it	 is	possibly	 the	most
essential	 kind.	 It	 yields	 more	 or	 less	 plausible	 conjectures	 which	 may	 or	 may	 not	 be	 confirmed	 by
experience	and	stricter	reasoning.	The	chemist,	experimenting	on	animals	in	order	to	foresee	the	influence
of	his	drugs	on	humans,	draws	conclusions	by	analogy.	But	so	did	a	small	boy	I	knew.	His	pet	dog	had	to
be	taken	to	the	veterinary,	and	he	inquired:

“Who	is	the	veterinary?”
“The	animal	doctor.”
“Which	animal	is	the	animal	doctor?”
9.	 An	 analogical	 conclusion	 from	 many	 parallel	 cases	 is	 stronger	 than	 one	 from	 fewer	 cases.	 Yet

quality	 is	 still	 more	 important	 here	 than	 quantity.	 Clear-cut	 analogies	 weigh	more	 heavily	 than	 vague
similarities,	systematically	arranged	instances	count	for	more	than	random	collections	of	cases.

In	the	foregoing	(under	8)	we	put	forward	a	conjecture	about	the	center	of	gravity	of	the	tetrahedron.
This	conjecture	was	supported	by	analogy;	the	case	of	the	tetrahedron	is	analogous	to	that	of	the	triangle.
We	may	strengthen	the	conjecture	by	examining	one	more	analogous	case,	the	case	of	a	homogeneous	rod
(that	is,	a	straight	line-segment	of	uniform	density).

The	analogy	between

segment						triangle						tetrahedron

has	many	aspects.	A	segment	is	contained	in	a	straight	line,	a	triangle	in	a	plane,	a	tetrahedron	in	space.
Straight	line-segments	are	the	simplest	one-dimensional	bounded	figures,	triangles	the	simplest	polygons,
tetrahedrons	the	simplest	polyhedrons.

The	 segment	 has	 2	 zero-dimensional	 bounding	 elements	 (2	 end-points)	 and	 its	 interior	 is	 one-
dimensional.

The	 triangle	has	3	 zero-dimensional	 and	3	one-dimensional	bounding	elements	 (3	vertices,	 3	 sides)
and	its	interior	is	two-dimensional.

The	tetrahedron	has	4	zero-dimensional,	6	one-dimensional,	and	4	two-dimensional	bounding	elements
(4	vertices,	6	edges,	4	faces),	and	its	interior	is	three-dimensional.



These	 numbers	 can	 be	 assembled	 into	 a	 table.	The	 successive	 columns	 contain	 the	 numbers	 for	 the
zero-,	 one-,	 two-,	 and	 three-dimensional	 elements,	 the	 successive	 rows	 the	 numbers	 for	 the	 segment,
triangle,	and	tetrahedron:

Very	little	familiarity	with	the	powers	of	a	binomial	is	needed	to	recognize	in	these	numbers	a	section	of
Pascal’s	triangle.	We	found	a	remarkable	regularity	in	segment,	triangle,	and	tetrahedron.

10.	 If	 we	 have	 experienced	 that	 the	 objects	 we	 compare	 are	 closely	 connected,	 “inferences	 by
analogy,”	as	the	following,	may	have	a	certain	weight	with	us.

The	center	of	gravity	of	a	homogeneous	rod	coincides	with	 the	center	of	gravity	of	 its	2	end-points.
The	 center	 of	 gravity	 of	 a	 homogeneous	 triangle	 coincides	with	 the	 center	 of	 gravity	 of	 its	 3	 vertices.
Should	we	not	suspect	that	the	center	of	gravity	of	a	homogeneous	tetrahedron	coincides	with	the	center	of
gravity	of	its	4	vertices?

Again,	the	center	of	gravity	of	a	homogeneous	rod	divides	the	distance	between	its	end-points	in	the
proportion	 1	 :	 1.	 The	 center	 of	 gravity	 of	 a	 triangle	 divides	 the	 distance	 between	 any	 vertex	 and	 the
midpoint	of	the	opposite	side	in	the	proportion	2	:	1.	Should	we	not	suspect	that	the	center	of	gravity	of	a
homogeneous	tetrahedron	divides	the	distance	between	any	vertex	and	the	center	of	gravity	of	the	opposite
face	in	the	proportion	3:	1?

It	appears	extremely	unlikely	that	 the	conjectures	suggested	by	these	questions	should	be	wrong,	 that
such	 a	 beautiful	 regularity	 should	 be	 spoiled.	 The	 feeling	 that	 harmonious	 simple	 order	 cannot	 be
deceitful	guides	the	discoverer	both	in	the	mathematical	and	in	the	other	sciences,	and	is	expressed	by	the
Latin	saying:	simplex	sigillum	veri	(simplicity	is	the	seal	of	truth).

[The	preceding	suggests	an	extension	to	n	dimensions.	It	appears	unlikely	that	what	is	true	in	the	first
three	dimensions,	 for	n	=	1,	2,	3,	 should	cease	 to	be	 true	 for	higher	values	of	n.	This	conjecture	 is	 an
“inference	by	 induction”;	 it	 illustrates	 that	 induction	 is	naturally	based	on	analogy.	See	 INDUCTION	 AND
MATHEMATICAL	INDUCTION.]

[11.	We	 finish	 the	present	 section	by	considering	briefly	 the	most	 important	 cases	 in	which	analogy
attains	the	precision	of	mathematical	ideas.

(I)	Two	systems	of	mathematical	objects,	say	S	and	S′,	are	so	connected	that	certain	relations	between
the	objects	of	S	are	governed	by	the	same	laws	as	those	between	the	objects	of	S′.

This	kind	of	analogy	between	S	and	S′	is	exemplified	by	what	we	have	discussed	under	1;	take	as	S	the
sides	of	a	rectangle,	as	S′	the	faces	of	a	rectangular	parallelepiped.

(II)	There	 is	a	one-one	correspondence	between	 the	objects	of	 the	 two	systems	S	and	S′,	preserving
certain	 relations.	That	 is,	 if	 such	a	 relation	holds	between	 the	objects	of	one	system,	 the	same	 relation
holds	between	the	corresponding	objects	of	the	other	system.	Such	a	connection	between	two	systems	is	a
very	precise	sort	of	analogy;	it	is	called	isomorphism	(or	holohedral	isomorphism).

(III)	There	is	a	one-many	correspondence	between	the	objects	of	the	two	systems	S	and	S′	preserving
certain	 relations.	Such	a	connection	 (which	 is	 important	 in	various	branches	of	advanced	mathematical
study,	especially	in	the	Theory	of	Groups,	and	need	not	be	discussed	here	in	detail)	is	called	merohedral
isomorphism	 (or	 homomorphism;	 homoiomorphism	 would	 be,	 perhaps,	 a	 better	 term).	 Merohedral
isomorphism	may	be	considered	as	another	very	precise	sort	of	analogy.]

Auxiliary	elements.	There	is	much	more	in	our	conception	of	the	problem	at	the	end	of	our	work	than



was	in	it	as	we	started	working	(PROGRESS	AND	ACHIEVEMENT,	1).	As	our	work	progresses,	we	add	new
elements	to	those	originally	considered.	An	element	that	we	introduce	in	the	hope	that	it	will	further	the
solution	is	called	an	auxiliary	element.

1.	There	are	various	kinds	of	auxiliary	elements.	Solving	a	geometric	problem,	we	may	introduce	new
lines	 into	 our	 figure,	 auxiliary	 lines.	 Solving	 an	 algebraic	 problem,	 we	 may	 introduce	 an	 auxiliary
unknown	(AUXILIARY	PROBLEMS,	1).	An	auxiliary	theorem	is	a	theorem	whose	proof	we	undertake	in	the
hope	of	promoting	the	solution	of	our	original	problem.

2.	There	are	various	reasons	for	introducing	auxiliary	elements.	We	are	glad	when	we	have	succeeded
in	 recollecting	 a	 problem	 related	 to	 ours	 and	 solved	 before.	 It	 is	 probable	 that	 we	 can	 use	 such	 a
problem	but	we	do	not	know	yet	how	to	use	it.	For	instance,	the	problem	which	we	are	trying	to	solve	is	a
geometric	problem,	and	 the	 related	problem	which	we	have	solved	before	and	have	now	succeeded	 in
recollecting	is	a	problem	about	triangles.	Yet	there	is	no	triangle	in	our	figure;	in	order	to	make	any	use	of
the	problem	recollected	we	must	have	a	triangle;	therefore,	we	have	to	introduce	one,	by	adding	suitable
auxiliary	lines	to	our	figure.	In	general,	having	recollected	a	formerly	solved	related	problem	and	wishing
to	use	it	for	our	present	one,	we	must	often	ask:	Should	we	introduce	some	auxiliary	element	in	order	to
make	its	use	possible?	(The	example	in	section	10	is	typical.)
Going	back	to	definitions,	we	have	another	opportunity	to	introduce	auxiliary	elements.	For	instance,

explicating	the	definition	of	a	circle	we	should	not	only	mention	its	center	and	its	radius,	but	we	should
also	introduce	these	geometric	elements	into	our	figure.	Without	introducing	them,	we	could	not	make	any
concrete	use	of	the	definition;	stating	the	definition	without	drawing	something	is	mere	lip-service.

Trying	to	use	known	results	and	going	back	to	definitions	are	among	the	best	reasons	for	introducing
auxiliary	elements;	but	they	are	not	the	only	ones.	We	may	add	auxiliary	elements	to	the	conception	of	our
problem	 in	 order	 to	 make	 it	 fuller,	 more	 suggestive,	 more	 familiar	 although	 we	 scarcely	 know	 yet
explicitly	how	we	shall	be	able	to	use	the	elements	added.	We	may	just	feel	that	it	is	a	“bright	idea”	to
conceive	the	problem	that	way	with	such	and	such	elements	added.

We	may	have	this	or	that	reason	for	introducing	an	auxiliary	element,	but	we	should	have	some	reason.
We	should	not	introduce	auxiliary	elements	wantonly.

3.	Example.	Construct	a	triangle,	being	given	one	angle,	the	altitude	drawn	from	the	vertex	of	the	given
angle,	and	the	perimeter	of	the	triangle.



FIG.	9

FIG.	10

We	 introduce	 suitable	 notation.	 Let	α	 denote	 the	 given	 angle,	 h	 the	 given	 altitude	 drawn	 from	 the
vertex	A	of	α	and	p	 the	given	perimeter.	We	draw	a	figure	 in	which	we	easily	place	α	and	h.	Have	we
used	 all	 the	 data?	 No,	 our	 figure	 does	 not	 contain	 the	 given	 length	 p,	 equal	 to	 the	 perimeter	 of	 the
triangle.	Therefore	we	must	introduce	p.	But	how?

We	may	attempt	to	introduce	p	in	various	ways.	The	attempts	exhibited	in	Figs.	9,	10	appear	clumsy.	If
we	try	to	make	clear	to	ourselves	why	they	appear	so	unsatisfactory,	we	may	perceive	that	it	is	for	lack	of
symmetry.

In	fact,	 the	 triangle	has	 three	unknown	sides	a,	b,	c.	We	call	a,	as	usual,	 the	side	opposite	 to	A;	 we
know	that

a	+	b	+	c	=	p.

Now,	 the	 sides	b	 and	 c	 play	 the	 same	 role;	 they	 are	 interchangeable;	 our	 problem	 is	 symmetric	 with
respect	 to	b	and	c.	But	b	and	c	do	not	play	 the	same	role	 in	our	 figures	9,	10;	placing	 the	 length	p	we
treated	b	and	c	differently;	the	figures	9	and	10	spoil	the	natural	symmetry	of	the	problem	with	respect	to



b	and	c.	We	should	place	p	so	that	it	has	the	same	relation	to	b	as	to	c.
This	consideration	may	be	helpful	in	suggesting	to	place	the	length	p	as	in	Fig.	11.	We	add	to	the	side	a

of

FIG.	11

the	triangle	the	segment	CE	of	length	b	on	one	side	and	the	segment	BD	of	the	length	c	on	the	other	side	so
that	p	appears	in	Fig.	11	as	the	line	ED	of	length

b	+	a	+	c	=	p.

If	we	have	some	little	experience	in	solving	problems	of	construction,	we	shall	not	fail	to	introduce	into
the	 figure,	 along	 with	ED,	 the	 auxiliary	 lines	AD	 and	AE,	 each	 of	 which	 is	 the	 base	 of	 an	 isosceles
triangle.	 In	 fact,	 it	 is	 not	 unreasonable	 to	 introduce	 elements	 into	 the	 problem	 which	 are	 particularly
simple	and	familiar,	as	isosceles	triangle.

We	 have	 been	 quite	 lucky	 in	 introducing	 our	 auxiliary	 lines.	 Examining	 the	 new	 figure	 we	 may
discover	 that	∠EAD	 has	 a	 simple	 relation	 to	 the	 given	 angle	 α.	 In	 fact,	 we	 find	 using	 the	 isosceles
triangles	Δ	ABD	and	Δ	ACE	that	∠DAE	=	 	+	90°.	After	this	remark,	it	is	natural	to	try	the	construction	of

Δ	DAE.	Trying	this	construction,	we	introduce	an	auxiliary	problem	which	is	much	easier	than	the	original
problem.

4.	Teachers	and	authors	of	textbooks	should	not	forget	that	the	intelligent	student	and	THE	 INTELLIGENT
READER	are	not	satisfied	by	verifying	that	the	steps	of	a	reasoning	are	correct	but	also	want	to	know	the
motive	and	 the	purpose	of	 the	various	 steps.	The	 introduction	of	an	auxiliary	element	 is	a	conspicuous
step.	 If	 a	 tricky	 auxiliary	 line	 appears	 abruptly	 in	 the	 figure,	 without	 any	 motivation,	 and	 solves	 the
problem	 surprisingly,	 intelligent	 students	 and	 readers	 are	 disappointed;	 they	 feel	 that	 they	 are	 cheated.
Mathematics	 is	 interesting	 in	 so	 far	 as	 it	 occupies	 our	 reasoning	 and	 inventive	 powers.	 But	 there	 is
nothing	 to	 learn	 about	 reasoning	 and	 invention	 if	 the	motive	 and	purpose	of	 the	most	 conspicuous	 step
remain	incomprehensible.	To	make	such	steps	comprehensible	by	suitable	remarks	(as	 in	 the	foregoing,
under	3)	or	by	carefully	chosen	questions	and	suggestions	(as	 in	sections	10,	18,	19,	20)	 takes	a	 lot	of
time	and	effort;	but	it	may	be	worth	while.

Auxiliary	problem	is	a	problem	which	we	consider,	not	for	its	own	sake,	but	because	we	hope	that	its
consideration	may	help	us	 to	solve	another	problem,	our	original	problem.	The	original	problem	is	 the
end	we	wish	to	attain,	the	auxiliary	problem	a	means	by	which	we	try	to	attain	our	end.

An	insect	tries	to	escape	through	the	windowpane,	tries	the	same	again	and	again,	and	does	not	try	the
next	window	which	is	open	and	through	which	it	came	into	the	room.	A	man	is	able,	or	at	least	should	be
able,	 to	 act	more	 intelligently.	 Human	 superiority	 consists	 in	 going	 around	 an	 obstacle	 that	 cannot	 be
overcome	directly,	in	devising	a	suitable	auxiliary	problem	when	the	original	problem	appears	insoluble.



To	devise	an	auxiliary	problem	is	an	important	operation	of	the	mind.	To	raise	a	clear-cut	new	problem
subservient	to	another	problem,	to	conceive	distinctly	as	an	end	what	is	means	to	another	end,	is	a	refined
achievement	 of	 the	 intelligence.	 It	 is	 an	 important	 task	 to	 learn	 (or	 to	 teach)	 how	 to	 handle	 auxiliary
problems	intelligently.

1.	Example.	Find	x,	satisfying	the	equation

x4	−	13x2	+	36	=	0.

If	we	observe	that	x4	=	(x2)2	we	may	see	the	advantage	of	introducing

y	=	x2.

We	obtain	now	a	new	problem:	Find	y,	satisfying	the	equation

y2	−	13y	+	36	=	0.

The	new	problem	is	an	auxiliary	problem;	we	intend	to	use	it	as	a	means	of	solving	our	original	problem.
The	unknown	of	our	auxiliary	problem,	y,	is	appropriately	called	auxiliary	unknown.

2.	Example.	Find	the	diagonal	of	a	rectangular	parallelepiped	being	given	the	 lengths	of	 three	edges
drawn	from	the	same	corner.

Trying	to	solve	this	problem	(section	8)	we	may	be	led,	by	analogy	(section	15),	to	another	problem:
Find	 the	 diagonal	 of	 a	 rectangular	 parallelogram	being	 given	 the	 lengths	 of	 two	 sides	 drawn	 from	 the
same	vertex.

The	new	problem	is	an	auxiliary	problem;	we	consider	it	because	we	hope	to	derive	some	profit	for
the	original	problem	from	its	consideration.

3.	Profit.	The	profit	that	we	derive	from	the	consideration	of	an	auxiliary	problem	may	be	of	various
kinds.	We	may	use	the	result	of	 the	auxiliary	problem.	Thus,	 in	example	1,	having	found	by	solving	the
quadratic	equation	for	y	that	y	 is	equal	to	4	or	to	9,	we	infer	that	x2	=	4	or	x2	=	9	and	derive	hence	all
possible	values	of	x.	In	other	cases,	we	may	use	the	method	of	the	auxiliary	problem.	Thus,	in	example	2,
the	auxiliary	problem	 is	a	problem	of	plane	geometry;	 it	 is	analogous	 to,	but	 simpler	 than,	 the	original
problem	which	is	a	problem	of	solid	geometry.	It	is	reasonable	to	introduce	an	auxiliary	problem	of	this
kind	in	the	hope	that	 it	will	be	instructive,	 that	 it	will	give	us	opportunity	to	familiarize	ourselves	with
certain	methods,	operations,	or	tools,	which	we	may	use	afterwards	for	our	original	problem.	In	example
2,	the	choice	of	the	auxiliary	problem	is	rather	lucky;	examining	it	closely	we	find	that	we	can	use	both	its
method	and	its	result.	(See	section	15,	and	DID	YOU	USE	ALL	THE	DATA?)

4.	Risk.	We	take	away	from	the	original	problem	the	time	and	the	effort	that	we	devote	to	the	auxiliary
problem.	If	our	investigation	of	the	auxiliary	problem	fails,	the	time	and	effort	we	devoted	to	it	may	be
lost.	Therefore,	we	should	exercise	our	judgment	in	choosing	an	auxiliary	problem.	We	may	have	various
good	 reasons	 for	 our	 choice.	 The	 auxiliary	 problem	 may	 appear	 more	 accessible	 than	 the	 original
problem;	or	it	may	appear	instructive;	or	it	may	have	some	sort	of	aesthetic	appeal.	Sometimes	the	only
advantage	 of	 the	 auxiliary	 problem	 is	 that	 it	 is	 new	 and	 offers	 unexplored	 possibilities;	we	 choose	 it
because	we	are	tired	of	the	original	problem	all	approaches	to	which	seem	to	be	exhausted.

5.	How	 to	 find	 one.	 The	 discovery	 of	 the	 solution	 of	 the	 proposed	 problem	 often	 depends	 on	 the
discovery	of	a	suitable	auxiliary	problem.	Unhappily,	there	is	no	infallible	method	of	discovering	suitable
auxiliary	 problems	 as	 there	 is	 no	 infallible	 method	 of	 discovering	 the	 solution.	 There	 are,	 however,
questions	and	suggestions	which	are	 frequently	helpful,	as	LOOK	AT	THE	UNKNOWN.	We	are	often	 led	 to
useful	auxiliary	problems	by	VARIATION	OF	THE	PROBLEM.

6.	Equivalent	problems.	Two	problems	are	equivalent	if	the	solution	of	each	involves	the	solution	of



the	other.	Thus,	in	our	example	1,	the	original	problem	and	the	auxiliary	problem	are	equivalent.
Consider	the	following	theorems:
A.	In	any	equilateral	triangle,	each	angle	is	equal	to	60°.
B.	In	any	equiangular	triangle,	each	angle	is	equal	to	60°.
These	two	theorems	are	not	identical.	They	contain	different	notions;	one	is	concerned	with	equality	of

the	 sides,	 the	 other	with	 equality	 of	 the	 angles	 of	 a	 triangle.	But	 each	 theorem	 follows	 from	 the	 other.
Therefore,	the	problem	to	prove	A	is	equivalent	to	the	problem	to	prove	B.

If	we	are	required	to	prove	A,	there	is	a	certain	advantage	in	introducing,	as	an	auxiliary	problem,	the
problem	to	prove	B.	The	theorem	B	is	a	little	easier	to	prove	than	A	and,	what	is	more	important,	we	may
foresee	that	B	is	easier	than	A,	we	may	judge	so,	we	may	find	plausible	from	the	outset	that	B	is	easier
than	A.	In	fact,	 the	 theorem	B,	concerned	only	with	angles,	 is	more	“homogeneous”	 than	 the	 theorem	A
which	is	concerned	with	both	angles	and	sides.

The	 passage	 from	 the	 original	 problem	 to	 the	 auxiliary	 problem	 is	 called	convertible	 reduction,	 or
bilateral	 reduction,	 or	 equivalent	 reduction	 if	 these	 two	 problems,	 the	 original	 and	 the	 auxiliary,	 are
equivalent.	Thus,	the	reduction	of	A	to	B	(see	above)	is	convertible	and	so	is	the	reduction	in	example	1.
Convertible	 reductions	are,	 in	a	certain	 respect,	more	 important	and	more	desirable	 than	other	ways	 to
introduce	 auxiliary	 problems,	 but	 auxiliary	 problems	which	 are	 not	 equivalent	 to	 the	 original	 problem
may	also	be	very	useful;	take	example	2.

7.	Chains	of	equivalent	auxiliary	problems	are	frequent	in	mathematical	reasoning.	We	are	required	to
solve	a	problem	A;	we	cannot	see	the	solution,	but	we	may	find	that	A	is	equivalent	to	another	problem	B.
Considering	B	we	may	run	into	a	third	problem	C	equivalent	to	B.	Proceeding	in	the	same	way,	we	reduce
C	 to	D,	and	so	on,	until	we	come	upon	a	 last	problem	L	whose	solution	 is	known	or	 immediate.	Each
problem	being	equivalent	to	the	preceding,	the	last	problem	L	must	be	equivalent	to	our	original	problem
A.	Thus	we	are	able	to	infer	the	solution	of	the	original	problem	A	from	the	problem	L	which	we	attained
as	the	last	link	in	a	chain	of	auxiliary	problems.

Chains	of	 problems	of	 this	 kind	were	noticed	by	 the	Greek	mathematicians	 as	we	may	 see	 from	an
important	 passage	 of	 PAPPUS.	 For	 an	 illustration,	 let	 us	 reconsider	 our	 example	 1.	 Let	 us	 call	 (A)	 the
condition	imposed	upon	the	unknown	x:

One	way	of	solving	the	problem	is	to	transform	the	proposed	condition	into	another	condition	which	we
shall	call	(B)	:

Observe	that	the	conditions	(A)	and	(B)	are	different.	They	are	only	slightly	different	if	you	wish	to	say
so,	they	are	certainly	equivalent	as	you	may	easily	convince	yourself,	but	they	are	definitely	not	identical.
The	passage	from	(A)	to	(B)	is	not	only	correct	but	has	a	clear-cut	purpose,	obvious	to	anybody	who	is
familiar	with	the	solution	of	quadratic	equations.	Working	further	in	the	same	direction	we	transform	the
condition	(B)	into	still	another	condition	(C)	:

Proceeding	in	the	same	way,	we	obtain



Each	 reduction	 that	 we	 made	 was	 convertible.	 Thus,	 the	 last	 condition	 (H)	 is	 equivalent	 to	 the	 first
condition	(A)	so	that	3,	−3,	2,	−2	are	all	possible	solutions	of	our	original	equation.

In	 the	 foregoing	 we	 derived	 from	 an	 original	 condition	 (A)	 a	 sequence	 of	 conditions	 (B),	 (C),
(D),	.	.	.	each	of	which	was	equivalent	to	the	foregoing.	This	point	deserves	the	greatest	care.	Equivalent
conditions	are	satisfied	by	the	same	objects.	Therefore,	if	we	pass	from	a	proposed	condition	to	a	new
condition	equivalent	 to	 it,	we	have	 the	 same	 solutions.	But	 if	we	pass	 from	a	proposed	 condition	 to	 a
narrower	one,	we	lose	solutions,	and	if	we	pass	to	a	wider	one	we	admit	improper,	adventitious	solutions
which	have	nothing	to	do	with	the	proposed	problem.	If,	in	a	series	of	successive	reductions,	we	pass	to	a
narrower	and	then	again	to	a	wider	condition	we	may	lose	track	of	the	original	problem	completely.	In
order	to	avoid	this	danger,	we	must	check	carefully	the	nature	of	each	newly	introduced	condition:	Is	it
equivalent	 to	 the	original	condition?	This	question	 is	 still	more	 important	when	we	do	not	deal	with	a
single	 equation	 as	 here	 but	 with	 a	 system	 of	 equations,	 or	 when	 the	 condition	 is	 not	 expressed	 by
equations	as,	for	instance,	in	problems	of	geometric	construction.

(Compare	 PAPPUS,	 especially	 comments	 2,	 3,	 4,	 8.	 The	 description	 on	 p.	 143,	 lines	 4–21,	 is
unnecessarily	 restricted;	 it	 describes	 a	 chain	 of	 “problems	 to	 find,”	 each	 of	 which	 has	 a	 different
unknown.	The	example	considered	here	has	just	the	opposite	speciality:	all	problems	of	the	chain	have	the
same	unknown	and	differ	only	in	the	form	of	the	condition.	Of	course,	no	such	restriction	is	necessary.)

8.	Unilateral	reduction.	We	 have	 two	 problems,	A	 and	B,	 both	 unsolved.	 If	we	 could	 solve	A	we
could	 hence	 derive	 the	 full	 solution	 of	B.	But	 not	 conversely;	 if	we	 could	 solve	B,	we	would	 obtain,
possibly,	some	information	about	A,	but	we	would	not	know	how	to	derive	the	full	solution	of	A	from	that
of	B.	In	such	a	case,	more	is	achieved	by	the	solution	of	A	than	by	the	solution	of	B.	Let	us	call	A	the	more
ambitious,	and	B	the	less	ambitious	of	the	two	problems.

If,	 from	 a	 proposed	 problem,	 we	 pass	 either	 to	 a	more	 ambitious	 or	 to	 a	 less	 ambitious	 auxiliary
problem	we	call	 the	step	a	unilateral	reduction.	There	are	 two	kinds	of	unilateral	 reduction,	and	both
are,	in	some	way	or	other,	more	risky	than	a	bilateral	or	convertible	reduction.

Our	example	2	shows	a	unilateral	reduction	to	a	less	ambitious	problem.	In	fact,	if	we	could	solve	the
original	 problem,	 concerned	 with	 a	 parallelepiped	 whose	 length,	 width,	 and	 height	 are	 a,	 b,	 c
respectively,	we	could	move	on	to	the	auxiliary	problem	putting	c	=	0	and	obtaining	a	parallelogram	with
length	 a	 and	width	 b.	 For	 another	 example	 of	 a	 unilateral	 reduction	 to	 a	 less	 ambitious	 problem	 see
SPECIALIZATION,	 3,	 4,	 5.	 These	 examples	 show	 that,	 with	 some	 luck,	 we	 may	 be	 able	 to	 use	 a	 less
ambitious	auxiliary	problem	as	a	stepping	stone,	 combining	 the	 solution	of	 the	 auxiliary	problem	with
some	appropriate	supplementary	remark	to	obtain	the	solution	of	the	original	problem.

Unilateral	reduction	to	a	more	ambitious	problem	may	also	be	successful.	(See	GENERALIZATION,	2,	and
the	reduction	of	the	first	to	the	second	problem	considered	in	INDUCTION	AND	MATHEMATICAL	INDUCTION,
1,	2.)	In	fact,	the	more	ambitious	problem	may	be	more	accessible;	this	is	the	INVENTOR’S	PARADOX.



Bolzano,	 Bernard	 (1781-1848),	 logician	 and	 mathematician,	 devoted	 an	 extensive	 part	 of	 his
comprehensive	presentation	of	logic,	Wissenschaftslehre,	to	the	subject	of	heuristic	(vol.	3,	pp.	293-575).
He	writes	about	this	part	of	his	work:	“I	do	not	think	at	all	that	I	am	able	to	present	here	any	procedure	of
investigation	that	was	not	perceived	long	ago	by	all	men	of	talent;	and	I	do	not	promise	at	all	that	you	can
find	here	anything	quite	new	of	this	kind.	But	I	shall	take	pains	to	state	in	clear	words	the	rules	and	ways
of	 investigation	 which	 are	 followed	 by	 all	 able	 men,	 who	 in	 most	 cases	 are	 not	 even	 conscious	 of
following	them.	Although	I	am	free	from	the	illusion	that	I	shall	fully	succeed	even	in	doing	this,	I	still
hope	that	the	little	that	is	presented	here	may	please	some	people	and	have	some	application	afterwards.”

Bright	 idea,	 or	 “good	 idea,”	 or	 “seeing	 the	 light,”	 is	 a	 colloquial	 expression	 describing	 a	 sudden
advance	 toward	 the	 solution;	 see	 PROGRESS	 AND	 ACHIEVEMENT,	 6.	 The	 coming	 of	 a	 bright	 idea	 is	 an
experience	familiar	to	everybody	but	difficult	to	describe	and	so	it	may	be	interesting	to	notice	that	a	very
suggestive	description	of	it	has	been	incidentally	given	by	an	authority	as	old	as	Aristotle.

Most	 people	 will	 agree	 that	 conceiving	 a	 bright	 idea	 is	 an	 “act	 of	 sagacity.”	 Aristotle	 defines
“sagacity”	as	follows:	“Sagacity	 is	a	hitting	by	guess	upon	the	essential	connection	in	an	inappreciable
time.	As	for	example,	if	you	see	a	person	talking	with	a	rich	man	in	a	certain	way,	you	may	instantly	guess
that	that	person	is	trying	to	borrow	money.	Or	observing	that	the	bright	side	of	the	moon	is	always	toward
the	sun,	you	may	suddenly	perceive	why	this	is;	namely,	because	the	moon	shines	by	the	light	of	the	sun.”1

The	first	example	is	not	bad	but	rather	trivial;	not	much	sagacity	is	needed	to	guess	things	of	this	sort
about	 rich	 men	 and	 money,	 and	 the	 idea	 is	 not	 very	 bright.	 The	 second	 example,	 however,	 is	 quite
impressive	if	we	make	a	little	effort	of	imagination	to	see	it	in	its	proper	setting.

We	should	realize	that	a	contemporary	of	Aristotle	had	to	watch	the	sun	and	the	stars	if	he	wished	to
know	the	time	since	there	were	no	wristwatches,	and	had	to	observe	the	phases	of	the	moon	if	he	planned
traveling	by	night	since	there	were	no	street	lights.	He	was	much	better	acquainted	with	the	sky	than	the
modern	city-dweller,	and	his	natural	intelligence	was	not	dimmed	by	undigested	fragments	of	journalistic
presentations	of	astronomical	theories.	He	saw	the	full	moon	as	a	flat	disc,	similar	to	the	disc	of	the	sun
but	much	 less	bright.	He	must	have	wondered	at	 the	 incessant	changes	 in	 the	shape	and	position	of	 the
moon.	He	observed	the	moon	occasionally	also	at	daytime,	about	sunrise	or	sunset,	and	found	out	“that	the
bright	side	of	 the	moon	 is	always	 toward	 the	sun”	which	was	 in	 itself	a	 respectable	achievement.	And
now	he	 perceives	 that	 the	 varying	 aspects	 of	 the	moon	 are	 like	 the	 various	 aspects	 of	 a	 ball	which	 is
illuminated	from	one	side	so	that	one	half	of	it	is	shiny	and	the	other	half	dark.	He	conceives	the	sun	and
the	moon	not	as	flat	discs	but	as	round	bodies,	one	giving	and	the	other	receiving	the	light.	He	understands
the	essential	connection,	he	rearranges	his	former	conceptions	instantly,	“in	an	inappreciable	time”:	there
is	a	sudden	leap	of	the	imagination,	a	bright	idea,	a	flash	of	genius.

Can	 you	 check	 the	 result?	 Can	 you	 check	 the	 argument?	 A	 good	 answer	 to	 these	 questions
strengthens	our	trust	in	the	solution	and	contributes	to	the	solidity	of	our	knowledge.

1.	Numerical	results	of	mathematical	problems	can	be	tested	by	comparing	them	to	observed	numbers,
or	 to	 a	 commonsense	 estimate	 of	 observable	 numbers.	 As	 problems	 arising	 from	 practical	 needs	 or
natural	curiosity	almost	always	aim	at	facts	it	could	be	expected	that	such	comparisons	with	observable
facts	are	seldom	omitted.	Yet	every	teacher	knows	that	students	achieve	incredible	things	in	this	respect.
Some	students	are	not	disturbed	at	all	when	they	find	16,130	ft.	for	the	length	of	the	boat	and	8	years,	2
months	 for	 the	 age	 of	 the	 captain	who	 is,	 by	 the	way,	 known	 to	 be	 a	 grandfather.	 Such	 neglect	 of	 the
obvious	does	not	show	necessarily	stupidity	but	rather	indifference	toward	artificial	problems.

2.	 Problems	 “in	 letters”	 are	 susceptible	 of	 more,	 and	 more	 interesting,	 tests	 than	 “problems	 in
numbers”	(section	14).	For	another	example,	let	us	consider	the	frustum	of	a	pyramid	with	square	base.	If
the	side	of	the	lower	base	is	a,	the	side	of	the	upper	base	b,	and	the	altitude	of	the	frustum	h,	we	find	for



the	volume

We	may	test	this	result	by	SPECIALIZATION.	In	fact,	if	b	=	a	the	frustum	becomes	a	prism	and	the	formula

yields	a2h;	and	if	b	=	0	the	frustum	becomes	a	pyramid	and	the	formula	yields	 .	We	may	apply	the

TEST	BY	DIMENSION.	In	fact,	the	expression	has	as	dimension	the	cube	of	a	length.	Again,	we	may	test	the
formula	by	variation	of	the	data.	In	fact,	if	any	one	of	the	positive	quantities	a,	b	or	h	increases	the	value
of	the	expression	increases.

Tests	of	this	sort	can	be	applied	not	only	to	the	final	result	but	also	to	intermediate	results.	They	are	so
useful	that	it	is	worth	while	preparing	for	them;	see	VARIATION	OF	THE	PROBLEM,	4.	In	order	to	be	able	to
use	 such	 tests,	 we	may	 find	 advantage	 in	 generalizing	 a	 “problem	 in	 numbers”	 and	 changing	 it	 into	 a
“problem	in	letters”;	see	GENERALIZATION,	3.

3.	Can	you	check	the	argument?	Checking	the	argument	step	by	step,	we	should	avoid	mere	repetition.
First,	mere	repetition	is	apt	to	become	boring,	uninstructive,	a	strain	on	the	attention.	Second,	where	we
stumbled	once,	there	we	are	likely	to	stumble	again	if	the	circumstances	are	the	same	as	before.	If	we	feel
that	 it	 is	necessary	 to	go	again	 through	 the	whole	argument	 step	by	step,	we	should	at	 least	 change	 the
order	of	the	steps,	or	their	grouping,	to	introduce	some	variation.

4.	It	 requires	 less	exertion	and	is	more	 interesting	to	pick	out	 the	weakest	point	of	 the	argument	and
examine	 it	 first.	 A	 question	 very	 useful	 in	 picking	 out	 points	 of	 the	 argument	 that	 are	 worth	 while
examining	is:	DID	YOU	USE	ALL	THE	DATA?

5.	It	is	clear	that	our	nonmathematical	knowledge	cannot	be	based	entirely	on	formal	proofs.	The	more
solid	part	of	our	everyday	knowledge	is	continually	tested	and	strengthened	by	our	everyday	experience.
Tests	by	observation	are	more	systematically	conducted	in	the	natural	sciences.	Such	tests	take	the	form	of
careful	 experiments	 and	measurements,	 and	 are	 combined	with	mathematical	 reasoning	 in	 the	 physical
sciences.	Can	our	knowledge	in	mathematics	be	based	on	formal	proofs	alone?

This	is	a	philosophical	question	which	we	cannot	debate	here.	It	is	certain	that	your	knowledge,	or	my
knowledge,	or	your	students’	knowledge	in	mathematics	is	not	based	on	formal	proofs	alone.	If	there	is
any	 solid	 knowledge	 at	 all,	 it	 has	 a	 broad	 experimental	 basis,	 and	 this	 basis	 is	 broadened	 by	 each
problem	whose	result	is	successfully	tested.

Can	you	derive	the	result	differently?	When	the	solution	that	we	have	finally	obtained	is	long	and
involved,	we	naturally	suspect	 that	 there	 is	some	clearer	and	less	roundabout	solution:	Can	you	derive
the	 result	 differently?	 Can	 you	 see	 it	 at	 a	 glance?	 Yet	 even	 if	 we	 have	 succeeded	 in	 finding	 a
satisfactory	 solution	 we	 may	 still	 be	 interested	 in	 finding	 another	 solution.	 We	 desire	 to	 convince
ourselves	of	 the	validity	of	a	 theoretical	 result	by	 two	different	derivations	as	we	desire	 to	perceive	a
material	object	through	two	different	senses.	Having	found	a	proof,	we	wish	to	find	another	proof	as	we
wish	to	touch	an	object	after	having	seen	it.

Two	proofs	are	better	than	one.	“It	is	safe	riding	at	two	anchors.”
1.	Example.	Find	the	area	S	of	the	lateral	surface	of	the	frustum	of	a	right	circular	cone,	being	given	the

radius	of	the	lower	base	R,	the	radius	of	the	upper	base	r,	and	the	altitude	h.
This	problem	can	be	solved	by	various	procedures.	For	 instance,	we	may	know	 the	 formula	 for	 the

lateral	surface	of	a	full	cone.	As	the	frustum	is	generated	by	cutting	off	from	a	cone	a	smaller	cone,	so	its
lateral	surface	is	the	difference	of	two	full	conical	surfaces;	it	remains	to	express	these	in	terms	of	R,	r,	h.



Carrying	through	this	idea,	we	obtain	finally	the	formula

Having	found	this	result	in	some	way	or	other,	after	longer	calculation,	we	may	desire	a	clearer	and	less
roundabout	argument.	Can	you	derive	the	result	differently?	Can	you	see	it	at	a	glance?

Desiring	to	see	intuitively	the	whole	result,	we	may	begin	with	trying	to	see	the	geometric	meaning	of
its	parts.	Thus,	we	may	observe	that

is	the	length	of	the	slant	height.	(The	slant	height	is	one	of	the	nonparallel	sides	of	the	isosceles	trapezoid
that,	 revolving	about	 the	 line	 joining	 the	midpoints	of	 its	parallel	 sides,	generates	 the	 frustum;	see	Fig.
12.)	Again,	we	may	discover	that

is	the	arithmetic	mean	of	the	perimeters	of	the	two	bases	of	the	frustum.	Looking	at	the	same	part	of	the
formula,	we	may	be	moved	to	write	it	also	in	the	form

that	is	the	perimeter	of	the	mid-section	of	the	frustum.	(We	call	here	mid-section	the	intersection	of	the
frustum	with	a	plane	which	 is	parallel	both	 to	 the	 lower	base	and	 to	 the	upper	base	of	 the	frustum	and
bisects	the	altitude.)

FIG.	12

Having	found	new	interpretations	of	various	parts,	we	may	see	now	the	whole	formula	in	a	different
light.	We	may	read	it	thus:

Area	=	Perimeter	of	mid-section	×	Slant	height.



We	may	recall	here	the	rule	for	the	trapezoid:

Area	=	Middle-line	×	Altitude.

(The	middle-line	 is	parallel	 to	 the	 two	parallel	 sides	of	 the	 trapezoid	and	bisects	 the	altitude.)	Seeing
intuitively	the	analogy	of	both	statements,	that	about	the	frustum	and	that	about	the	trapezoid,	we	see	the
whole	result	about	the	frustum	“almost	at	a	glance.”	That	is,	we	feel	that	we	are	very	near	now	to	a	short
and	direct	proof	of	the	result	found	by	a	long	calculation.

2.	The	foregoing	example	is	typical.	Not	entirely	satisfied	with	our	derivation	of	the	result,	we	wish	to
improve	 it,	 to	change	 it.	Therefore,	we	study	 the	 result,	 trying	 to	understand	 it	better,	 to	 see	some	new
aspect	of	it.	We	may	succeed	first	in	observing	a	new	interpretation	of	a	certain	small	part	of	the	result.
Then,	we	may	be	lucky	enough	to	discover	some	new	mode	of	conceiving	some	other	part.

Examining	the	various	parts,	one	after	the	other,	and	trying	various	ways	of	considering	them,	we	may
be	led	finally	to	see	the	whole	result	in	a	different	light,	and	our	new	conception	of	the	result	may	suggest
a	new	proof.

It	may	be	confessed	that	all	this	is	more	likely	to	happen	to	an	experienced	mathematician	dealing	with
some	advanced	problem	than	to	a	beginner	struggling	with	some	elementary	problem.	The	mathematician
who	has	 a	great	 deal	 of	 knowledge	 is	more	 exposed	 than	 the	beginner	 to	 the	danger	of	mobilizing	 too
much	 knowledge	 and	 framing	 an	 unnecessarily	 involved	 argument.	 But,	 as	 a	 compensation,	 the
experienced	mathematician	is	in	a	better	position	than	the	beginner	to	appreciate	the	reinterpretation	of	a
small	part	of	 the	 result	and	 to	proceed,	accumulating	such	small	advantages,	 to	 recasting	ultimately	 the
whole	result.

Nevertheless,	it	can	happen	even	in	very	elementary	classes	that	the	students	present	an	unnecessarily
complicated	solution.	Then,	the	teacher	should	show	them,	at	least	once	or	twice,	not	only	how	to	solve
the	problem	more	shortly	but	also	how	to	find,	in	the	result	itself,	indications	of	a	shorter	solution.

See	also	REDUCTIO	AD	ABSURDUM	AND	INDIRECT	PROOF.

Can	you	use	the	result?	To	find	 the	solution	of	a	problem	by	our	own	means	 is	a	discovery.	 If	 the
problem	is	not	difficult,	 the	discovery	 is	 not	 so	momentous,	 but	 it	 is	 a	 discovery	nevertheless.	Having
made	some	discovery,	however	modest,	we	should	not	 fail	 to	 inquire	whether	 there	 is	 something	more
behind	it,	we	should	not	miss	the	possibilities	opened	up	by	the	new	result,	we	should	try	to	use	again	the
procedure	used.	Exploit	your	success!	Can	you	use	the	result,	or	the	method,	for	some	other	problem?

1.	We	 can	 easily	 imagine	 new	 problems	 if	 we	 are	 somewhat	 familiar	 with	 the	 principal	means	 of
varying	 a	 problem,	 as	GENERALIZATION,	 SPECIALIZATION,	 ANALOGY,	 DECOMPOSING	 AND	 RECOMBINING.	We
start	 from	 a	 proposed	 problem,	 we	 derive	 from	 it	 others	 by	 the	 means	 we	 just	 mentioned,	 from	 the
problems	 we	 obtained	 we	 derive	 still	 others,	 and	 so	 on.	 The	 process	 is	 unlimited	 in	 theory	 but,	 in
practice,	we	seldom	carry	it	very	far,	because	the	problems	that	we	obtain	so	are	apt	to	be	inaccessible.

On	the	other	hand	we	can	construct	new	problems	which	we	can	easily	solve	using	the	solution	of	a
problem	previously	solved;	but	these	easy	new	problems	are	apt	to	be	uninteresting.

To	find	a	new	problem	which	is	both	interesting	and	accessible,	is	not	so	easy;	we	need	experience,
taste,	 and	 good	 luck.	 Yet	 we	 should	 not	 fail	 to	 look	 around	 for	 more	 good	 problems	 when	 we	 have
succeeded	 in	solving	one.	Good	problems	and	mushrooms	of	certain	kinds	have	something	 in	common;
they	grow	in	clusters.	Having	found	one,	you	should	 look	around;	 there	 is	a	good	chance	 that	 there	are
some	more	quite	near.

2.	We	are	going	to	 illustrate	some	of	 the	foregoing	points	by	 the	same	example	 that	we	discussed	in
sections	8,	10,	12,	14,	15.	Thus	we	start	from	the	following	problem:

Given	 the	 three	 dimensions	 (length,	 breadth,	 and	 height)	 of	 a	 rectangular	 parallelepiped,	 find	 the



diagonal.
If	we	know	the	solution	of	this	problem,	we	can	easily	solve	any	of	the	following	problems	(of	which

the	first	two	were	almost	stated	in	section	14).
Given	 the	 three	 dimensions	 of	 a	 rectangular	 parallelepiped,	 find	 the	 radius	 of	 the	 circumscribed

sphere.
The	base	 of	 a	 pyramid	 is	 a	 rectangle	 of	which	 the	 center	 is	 the	 foot	 of	 the	 altitude	 of	 the	 pyramid.

Given	the	altitude	of	the	pyramid	and	the	sides	of	its	base,	find	the	lateral	edges.
Given	the	rectangular	coordinates	(x1,	y1,	z1),	(x2,	y2,	z2)	of	 two	points	 in	space,	 find	 the	distance	of

these	points.
We	solve	these	problems	easily	because	they	are	scarcely	different	from	the	original	problem	whose

solution	we	 know.	 In	 each	 case,	 we	 add	 some	 new	 notion	 to	 our	 original	 problem,	 as	 circumscribed
sphere,	 pyramid,	 rectangular	 coordinates.	 These	 notions	 are	 easily	 added	 and	 easily	 eliminated,	 and,
having	got	rid	of	them,	we	fall	back	upon	our	original	problem.

The	foregoing	problems	have	a	certain	interest	because	the	notions	that	we	introduced	into	the	original
problem	are	interesting.	The	last	problem,	that	about	the	distance	of	two	points	given	by	their	coordinates,
is	even	an	important	problem	because	rectangular	coordinates	are	important.

3.	Here	is	another	problem	which	we	can	easily	solve	if	we	know	the	solution	of	our	original	problem:
Given	the	length,	the	breadth,	and	the	diagonal	of	a	rectangular	parallelepiped,	find	the	height.

In	fact,	the	solution	of	our	original	problem	consists	essentially	in	establishing	a	relation	among	four
quantities,	the	three	dimensions	of	the	parallelepiped	and	its	diagonal.	If	any	three	of	these	four	quantities
are	given,	we	can	calculate	the	fourth	from	the	relation.	Thus,	we	can	solve	the	new	problem.

We	have	here	a	pattern	to	derive	easily	solvable	new	problems	from	a	problem	we	have	solved:	we
regard	the	original	unknown	as	given	and	one	of	the	original	data	as	unknown.	The	relation	connecting	the
unknown	and	the	data	is	the	same	in	both	problems,	the	old	and	the	new.	Having	found	this	relation	in	one,
we	can	use	it	also	in	the	other.

This	 pattern	 of	 deriving	 new	 problems	 by	 interchanging	 the	 roles	 is	 very	 different	 from	 the	 pattern
followed	under	2.

4.	Let	us	now	derive	some	new	problems	by	other	means.
A	 natural	 generalization	 of	 our	 original	 problem	 is	 the	 following:	 Find	 the	 diagonal	 of	 a

parallelepiped,	being	given	the	three	edges	issued	from	an	end-point	of	the	diagonal,	and	the	three	angles
between	these	three	edges.

By	specialization	we	obtain	the	following	problem:	Find	the	diagonal	of	a	cube	with	given	edge.
We	may	be	led	to	an	inexhaustible	variety	of	problems	by	analogy.	Here	are	a	few	derived	from	those

considered	under	2:	Find	 the	diagonal	 of	 a	 regular	 octahedron	with	given	 edge.	Find	 the	 radius	of	 the
circumscribed	 sphere	 of	 a	 regular	 tetrahedron	 with	 given	 edge.	 Given	 the	 geographical	 coordinates,
latitude	 and	 longitude,	 of	 two	 points	 on	 the	 earth’s	 surface	 (which	 we	 regard	 as	 a	 sphere)	 find	 their
spherical	distance.

All	 these	 problems	 are	 interesting	 but	 only	 the	 one	 obtained	 by	 specialization	 can	 be	 solved
immediately	on	the	basis	of	the	solution	of	the	original	problem.

5.	 We	 may	 derive	 new	 problems	 from	 a	 proposed	 one	 by	 considering	 certain	 of	 its	 elements	 as
variable.

A	special	case	of	a	problem	mentioned	under	2	is	to	find	the	radius	of	a	sphere	circumscribed	about	a
cube	whose	edge	is	given.	Let	us	regard	the	cube,	and	the	common	center	of	cube	and	sphere	as	fixed,	but
let	us	vary	 the	 radius	of	 the	 sphere.	 If	 this	 radius	 is	 small,	 the	 sphere	 is	 contained	 in	 the	 cube.	As	 the
radius	increases,	the	sphere	expands	(as	a	rubber	balloon	in	the	process	of	being	inflated).	At	a	certain
moment,	 the	 sphere	 touches	 the	 faces	 of	 the	 cube;	 a	 little	 later,	 its	 edges;	 still	 later	 the	 sphere	 passes



through	the	vertices.	Which	values	does	the	radius	assume	at	these	three	critical	moments?
6.	The	mathematical	experience	of	the	student	is	incomplete	if	he	never	had	an	opportunity	to	solve	a

problem	invented	by	himself.	The	teacher	may	show	the	derivation	of	new	problems	from	one	just	solved
and,	doing	so,	provoke	the	curiosity	of	the	students.	The	teacher	may	also	leave	some	part	of	the	invention
to	the	students.	For	instance,	he	may	tell	about	the	expanding	sphere	we	just	discussed	(under	5)	and	ask:
“What	would	you	try	to	calculate?	Which	value	of	the	radius	is	particularly	interesting?”

Carrying	out.	To	conceive	a	plan	and	to	carry	it	through	are	two	different	things.	This	is	true	also	of
mathematical	problems	in	a	certain	sense;	between	carrying	out	the	plan	of	the	solution,	and	conceiving	it,
there	are	certain	differences	in	the	character	of	the	work.

1.	 We	 may	 use	 provisional	 and	 merely	 plausible	 arguments	 when	 devising	 the	 final	 and	 rigorous
argument	 as	 we	 use	 scaffolding	 to	 support	 a	 bridge	 during	 construction.	When,	 however,	 the	 work	 is
sufficiently	advanced	we	take	off	the	scaffolding,	and	the	bridge	should	be	able	to	stand	by	itself.	In	the
same	way,	when	the	solution	is	sufficiently	advanced,	we	brush	aside	all	kinds	of	provisional	and	merely
plausible	arguments,	and	the	result	should	be	supported	by	rigorous	argument	alone.

Devising	the	plan	of	the	solution,	we	should	not	be	too	afraid	of	merely	plausible,	heuristic	reasoning.
Anything	is	right	that	leads	to	the	right	idea.	But	we	have	to	change	this	standpoint	when	we	start	carrying
out	the	plan	and	then	we	should	accept	only	conclusive,	strict	arguments.	Carrying	out	your	plan	of	the
solution	check	each	step.	Can	you	see	clearly	that	the	step	is	correct?

The	more	painstakingly	we	check	our	steps	when	carrying	out	 the	plan,	 the	more	freely	we	may	use
heuristic	reasoning	when	devising	it.

2.	We	 should	 give	 some	 consideration	 to	 the	 order	 in	 which	we	work	 out	 the	 details	 of	 our	 plan,
especially	if	our	problem	is	complex.	We	should	not	omit	any	detail,	we	should	understand	the	relation	of
the	detail	before	us	to	the	whole	problem,	we	should	not	lose	sight	of	the	connection	of	the	major	steps.
Therefore,	we	should	proceed	in	proper	order.

In	particular,	it	is	not	reasonable	to	check	minor	details	before	we	have	good	reasons	to	believe	that
the	major	steps	of	the	argument	are	sound.	If	there	is	a	break	in	the	main	line	of	the	argument,	checking	this
or	that	secondary	detail	would	be	useless	anyhow.

The	order	 in	which	we	work	out	 the	details	of	 the	argument	may	be	very	different	from	the	order	 in
which	we	invented	them;	and	the	order	in	which	we	write	down	the	details	in	a	definitive	exposition	may
be	still	different.	Euclid’s	Elements	present	the	details	of	the	argument	in	a	rigid	systematic	order	which
was	often	imitated	and	often	criticized.

3.	 In	 Euclid’s	 exposition	 all	 arguments	 proceed	 in	 the	 same	 direction:	 from	 the	 data	 toward	 the
unknown	in	“problems	to	find,”	and	from	the	hypothesis	toward	the	conclusion	in	“problems	to	prove.”
Any	new	element,	point,	line,	etc.,	has	to	be	correctly	derived	from	the	data	or	from	elements	correctly
derived	 in	 foregoing	 steps.	Any	new	assertion	has	 to	 be	 correctly	 proved	 from	 the	hypothesis	 or	 from
assertions	correctly	proved	in	foregoing	steps.	Each	new	element,	each	new	assertion	is	examined	when	it
is	encountered	first,	and	so	it	has	to	be	examined	just	once;	we	may	concentrate	all	our	attention	upon	the
present	step,	we	need	not	look	behind	us,	or	look	ahead.	The	very	last	new	element	whose	derivation	we
have	to	check,	is	the	unknown.	The	very	last	assertion	whose	proof	we	have	to	examine,	is	the	conclusion.
If	each	step	is	correct,	also	the	last	one,	the	whole	argument	is	correct.

The	Euclidean	way	of	exposition	can	be	highly	recommended,	without	reservation,	if	the	purpose	is	to
examine	the	argument	in	detail.	Especially,	if	it	is	our	own	argument,	and	it	is	long	and	complicated,	and
we	have	not	only	found	it	but	have	also	surveyed	it	on	large	lines	so	that	nothing	is	 left	but	 to	examine
each	particular	point	in	itself,	then	nothing	is	better	than	to	write	out	the	whole	argument	in	the	Euclidean
way.

The	Euclidean	way	of	exposition,	however,	cannot	be	recommended	without	reservation	if	the	purpose



is	 to	 convey	 an	 argument	 to	 a	 reader	 or	 to	 a	 listener	 who	 never	 heard	 of	 it	 before.	 The	 Euclidean
exposition	 is	 excellent	 to	 show	 each	 particular	 point	 but	 not	 so	 good	 to	 show	 the	 main	 line	 of	 the
argument.	 THE	 INTELLIGENT	 READER	 can	 easily	 see	 that	 each	 step	 is	 correct	 but	 has	 great	 difficulty	 in
perceiving	the	source,	the	purpose,	the	connection	of	the	whole	argument.	The	reason	for	this	difficulty	is
that	 the	Euclidean	 exposition	 fairly	often	proceeds	 in	 an	order	 exactly	opposite	 to	 the	natural	 order	of
invention.	(Euclid’s	exposition	follows	rigidly	the	order	of	“synthesis”;	see	PAPPUS,	especially	comments
3,	4,	5.)

4.	Let	us	sum	up.	Euclid’s	manner	of	exposition,	progressing	relentlessly	from	the	data	to	the	unknown
and	from	the	hypothesis	to	the	conclusion,	is	perfect	for	checking	the	argument	in	detail	but	far	from	being
perfect	for	making	understandable	the	main	line	of	the	argument.

It	 is	highly	desirable	 that	 the	students	 should	examine	 their	own	arguments	 in	 the	Euclidean	manner,
proceeding	from	the	data	to	the	unknown,	and	checking	each	step	although	nothing	of	this	kind	should	be
too	 rigidly	 enforced.	 It	 is	 not	 so	 desirable	 that	 the	 teacher	 should	 present	 many	 proofs	 in	 the	 pure
Euclidean	manner,	although	the	Euclidean	presentation	may	be	very	useful	after	a	discussion	in	which,	as
is	 recommended	by	 the	 present	 book,	 the	 students	 guided	by	 the	 teacher	 discover	 the	main	 idea	 of	 the
solution	as	independently	as	possible.	Also	desirable	seems	to	be	the	manner	adopted	by	some	textbooks
in	which	an	intuitive	sketch	of	the	main	idea	is	presented	first	and	the	details	 in	the	Euclidean	order	of
exposition	afterwards.

5.	Wishing	to	satisfy	himself	that	his	proposition	is	true,	the	conscientious	mathematician	tries	to	see	it
intuitively	and	to	give	a	formal	proof.	Can	you	see	clearly	that	 it	 is	correct?	Can	you	prove	that	 it	 is
correct?	 The	 conscientious	 mathematician	 acts	 in	 this	 respect	 like	 the	 lady	 who	 is	 a	 conscientious
shopper.	Wishing	to	satisfy	herself	of	the	quality	of	a	fabric,	she	wants	to	see	it	and	to	touch	it.	Intuitive
insight	and	formal	proof	are	two	different	ways	of	perceiving	the	truth,	comparable	to	the	perception	of	a
material	object	through	two	different	senses,	sight	and	touch.

Intuitive	 insight	may	 rush	 far	 ahead	 of	 formal	 proof.	Any	 intelligent	 student,	without	 any	 systematic
knowledge	of	 solid	geometry,	 can	 see	 as	 soon	as	he	has	 clearly	understood	 the	 terms	 that	 two	 straight
lines	parallel	to	the	same	straight	line	are	parallel	to	each	other	(the	three	lines	may	or	may	not	be	in	the
same	 plane).	 Yet	 the	 proof	 of	 this	 statement,	 as	 given	 in	 proposition	 9	 of	 the	 11th	 book	 of	 Euclid’s
Elements,	needs	a	long,	careful,	and	ingenious	preparation.

Formal	manipulation	 of	 logical	 rules	 and	 algebraic	 formulas	may	get	 far	 ahead	of	 intuition.	Almost
everybody	can	see	at	once	that	3	straight	lines,	taken	at	random,	divide	the	plane	into	7	parts	(look	at	the
only	finite	part,	the	triangle	included	by	the	3	lines).	Scarcely	anybody	is	able	to	see,	even	straining	his
attention	 to	 the	utmost,	 that	5	planes,	 taken	at	 random,	divide	space	 into	26	parts.	Yet	 it	 can	be	 rigidly
proved	that	the	right	number	is	actually	26,	and	the	proof	is	not	even	long	or	difficult.

Carrying	out	our	plan,	we	check	each	step.	Checking	our	step,	we	may	rely	on	intuitive	insight	or	on
formal	 rules.	Sometimes	 the	 intuition	 is	 ahead,	 sometimes	 the	 formal	 reasoning.	 It	 is	 an	 interesting	and
useful	exercise	to	do	it	both	ways.	Can	you	see	clearly	that	the	step	is	correct?	Yes,	I	can	see	it	clearly
and	distinctly.	Intuition	is	ahead;	but	could	formal	reasoning	overtake	it?	Can	you	also	PROVE	 that	 it	 is
correct?

Trying	to	prove	formally	what	is	seen	intuitively	and	to	see	intuitively	what	is	proved	formally	is	an
invigorating	mental	exercise.	Unfortunately,	in	the	classroom	there	is	not	always	enough	time	for	it.	The
example,	discussed	in	sections	12	and	14,	is	typical	in	this	respect.

Condition	 is	a	principal	part	of	a	“problem	to	find.”	See	PROBLEMS	TO	FIND,	 PROBLEMS	TO	PROVE,	3.
See	also	TERMS,	NEW	AND	OLD,	2.

A	condition	is	called	redundant	if	it	contains	superfluous	parts.	It	is	called	contradictory	 if	 its	parts
are	mutually	opposed	and	inconsistent	so	that	there	is	no	object	satisfying	the	condition.



Thus,	 if	 a	 condition	 is	 expressed	 by	 more	 linear	 equations	 than	 there	 are	 unknowns,	 it	 is	 either
redundant	or	contradictory;	if	the	condition	is	expressed	by	fewer	equations	than	there	are	unknowns,	it	is
insufficient	to	determine	the	unknowns;	if	the	condition	is	expressed	by	just	as	many	equations	as	there	are
unknowns	 it	 is	 usually	 just	 sufficient	 to	 determine	 the	 unknowns	 but	 may	 be,	 in	 exceptional	 cases,
contradictory	or	insufficient.

Contradictory.	See	CONDITION.

Corollary	is	a	theorem	which	we	find	easily	in	examining	another	theorem	just	found.	The	word	is	of
Latin	origin;	a	more	literal	translation	would	be	“gratuity”	or	“tip.”

Could	you	derive	something	useful	from	the	data?	We	have	before	us	an	unsolved	problem,	an	open
question.	We	 have	 to	 find	 the	 connection	 between	 the	 data	 and	 the	 unknown.	We	may	 represent	 our
unsolved	problem	as	open	space	between	the	data	and	the	unknown,	as	a	gap	across	which	we	have	to
construct	a	bridge.	We	can	start	constructing	our	bridge	from	either	side,	from	the	unknown	or	from	the
data.
Look	at	the	unknown!	And	try	to	think	of	a	familiar	problem	having	the	same	or	a	similar	unknown.

This	suggests	starting	the	work	from	the	unknown.
Look	at	the	data!	Could	you	derive	something	useful	from	the	data?	This	suggests	starting	the	work

from	the	data.
It	appears	that	starting	the	reasoning	from	the	unknown	is	usually	preferable	(see	PAPPUS	and	WORKING

BACKWARDS).	Yet	the	alternative	start,	from	the	data,	also	has	chances	of	success,	must	often	be	tried,	and
deserves	illustration.
Example.	We	are	given	three	points	A,	B,	and	C.	Draw	a	line	through	A	which	passes	between	B	and	C

and	is	at	equal	distances	from	B	and	C.
What	are	the	data?	Three	points,	A,	B,	and	C,	are	given	in	position.	We	draw	a	figure,	exhibiting	the

data	(Fig.	13).
What	is	the	unknown?	A	straight	line.
What	is	the	condition?	The	required	line	passes	through	A,	and	passes	between	B	and	C,	at	the	same

distance	from	each.	We	assemble	the	unknown	and	the	data

FIG.	13

in	 a	 figure	 exhibiting	 the	 required	 relations	 (Fig.	 14).	 Our	 figure,	 suggested	 by	 the	 definition	 of	 the



distance	of	a	point	from	a	straight	line,	shows	the	right	angles	involved	by	this	definition.

FIG.	14

The	 figure,	 as	 it	 is	 plotted,	 is	 still	 “too	 empty.”	 The	 unknown	 straight	 line	 is	 still	 unsatisfactorily
connected	with	the	data	A,	B,	and	C.	The	figure	needs	some	auxiliary	line,	some	addition—but	what?	A
fairly	good	student	can	get	stranded	here.	There	are,	of	course,	various	things	to	try,	but	the	best	question
to	refloat	him	is:	Could	you	derive	something	useful	from	the	data?

In	 fact,	what	are	 the	data?	The	 three	points	exhibited	 in	Fig.	13,	nothing	else.	We	have	not	yet	used
sufficiently	the	points	B	and	C;	we	have	to	derive	something	useful	from	them.	But	what	can	you	do	with
just	two	points?	Join	them	by	a	straight	line.	So,	we	draw	Fig.	15.

FIG.	15

If	we	superpose	Fig.	14	and	Fig.	15,	the	solution	may	appear	in	a	flash:	There	are	two	right	triangles,
they	are	congruent,	there	is	an	all-important	new	point	of	intersection.

Could	 you	 restate	 the	 problem?	Could	 you	 restate	 it	 still	 differently?	 These	 questions	 aim	 at
suitable	VARIATION	OF	THE	PROBLEM.
Go	back	to	definitions.	See	DEFINITION.

Decomposing	and	recombining	are	important	operations	of	the	mind.
You	examine	an	object	 that	 touches	your	 interest	or	challenges	your	curiosity:	a	house	you	 intend	 to



rent,	an	important	but	cryptic	telegram,	any	object	whose	purpose	and	origin	puzzle	you,	or	any	problem
you	intend	to	solve.	You	have	an	impression	of	the	object	as	a	whole	but	this	impression,	possibly,	is	not
definite	 enough.	A	detail	 strikes	you,	 and	you	 focus	your	 attention	upon	 it.	Then,	 you	 concentrate	upon
another	detail;	then,	again,	upon	another.	Various	combinations	of	details	may	present	themselves	and	after
a	while	you	again	consider	the	object	as	a	whole	but	you	see	it	now	differently.	You	decompose	the	whole
into	its	parts,	and	you	recombine	the	parts	into	a	more	or	less	different	whole.

1.	 If	 you	 go	 into	 detail	 you	may	 lose	 yourself	 in	 details.	 Too	many	 or	 too	minute	 particulars	 are	 a
burden	on	the	mind.	They	may	prevent	you	from	giving	sufficient	attention	to	the	main	point,	or	even	from
seeing	the	main	point	at	all.	Think	of	the	man	who	cannot	see	the	forest	for	the	trees.

Of	course,	we	do	not	wish	to	waste	our	time	with	unnecessary	detail	and	we	should	reserve	our	effort
for	the	essential.	The	difficulty	is	that	we	cannot	say	beforehand	which	details	will	turn	out	ultimately	as
necessary	and	which	will	not.

Therefore,	let	us,	first	of	all,	understand	the	problem	as	a	whole.	Having	understood	the	problem,	we
shall	be	in	a	better	position	to	judge	which	particular	points	may	be	the	most	essential.	Having	examined
one	or	two	essential	points	we	shall	be	in	a	better	position	to	judge	which	further	details	might	deserve
closer	examination.	Let	us	go	 into	detail	and	decompose	 the	problem	gradually,	but	not	 further	 than	we
need	to.

Of	course,	the	teacher	cannot	expect	that	all	students	should	act	wisely	in	this	respect.	On	the	contrary,
it	is	a	very	foolish	and	bad	habit	with	some	students	to	start	working	at	details	before	having	understood
the	problem	as	a	whole.

2.	We	are	going	to	consider	mathematical	problems,	“problems	to	find.”
Having	understood	the	problem	as	a	whole,	its	aim,	its	main	point,	we	wish	to	go	into	detail.	Where

should	we	start?	In	almost	all	cases,	it	is	reasonable	to	begin	with	the	consideration	of	the	principal	parts
of	the	problem	which	are	the	unknown,	the	data,	and	the	condition.	In	almost	all	cases	it	is	advisable	to
start	 the	detailed	 examination	of	 the	problem	with	 the	questions:	What	 is	 the	 unknown?	What	 are	 the
data?	What	is	the	condition?

If	we	wish	to	examine	further	details,	what	should	we	do?	Fairly	often,	it	is	advisable	to	examine	each
datum	by	itself,	to	separate	the	various	parts	of	the	condition,	and	to	examine	each	part	by	itself.

We	may	find	it	necessary,	especially	if	our	problem	is	more	difficult,	to	decompose	the	problem	still
further,	and	to	examine	still	more	remote	details.	Thus,	it	may	be	necessary	to	go	back	to	the	definition	of
a	 certain	 term,	 to	 introduce	 new	 elements	 involved	 by	 the	 definition,	 and	 to	 examine	 the	 elements	 so
introduced.

3.	 After	 having	 decomposed	 the	 problem,	 we	 try	 to	 recombine	 its	 elements	 in	 some	 new	 manner.
Especially,	 we	 may	 try	 to	 recombine	 the	 elements	 of	 the	 problem	 into	 some	 new,	 more	 accessible
problem	which	we	could	possibly	use	as	an	auxiliary	problem.

There	 are,	 of	 course,	 unlimited	 possibilities	 of	 recombination.	 Difficult	 problems	 demand	 hidden,
exceptional,	original	combinations,	and	the	ingenuity	of	the	problem-solver	shows	itself	in	the	originality
of	 the	 combination.	 There	 are,	 however,	 certain	 usual	 and	 relatively	 simple	 sorts	 of	 combinations,
sufficient	 for	 simpler	 problems,	 which	 we	 should	 know	 thoroughly	 and	 try	 first,	 even	 if	 we	 may	 be
obliged	eventually	to	resort	to	less	obvious	means.

There	is	a	formal	classification	in	which	the	most	usual	and	useful	combinations	are	neatly	placed.	In
constructing	a	new	problem	from	the	proposed	problem,	we	may

(1)	keep	the	unknown	and	change	the	rest	(the	data	and	the	condition);	or
(2)	keep	the	data	and	change	the	rest	(the	unknown	and	the	condition);	or
(3)	change	both	the	unknown	and	the	data.
We	are	going	to	examine	these	cases.



[The	 cases	 (1)	 and	 (2)	 overlap.	 In	 fact,	 it	 is	 possible	 to	 keep	 both	 the	 unknown	 and	 the	 data,	 and
transform	 the	 problem	 by	 changing	 the	 form	 of	 the	 condition	 alone.	 For	 instance,	 the	 two	 following
problems,	although	visibly	equivalent,	are	not	exactly	the	same:

Construct	an	equilateral	triangle,	being	given	a	side.
Construct	an	equiangular	triangle,	being	given	a	side.
The	difference	of	the	two	statements	which	is	slight	in	the	present	example	may	be	momentous	in	other

cases.	Such	cases	are	even	important	in	certain	respects	but	it	would	take	up	too	much	space	to	discuss
them	here.	Compare	AUXILIARY	PROBLEMS,	7,	last	remark.]

4.	Keeping	the	unknown	and	changing	 the	data	and	 the	condition	 in	order	 to	 transform	the	proposed
problem	is	often	useful.	The	suggestion	LOOK	AT	THE	UNKNOWN	aims	at	problems	with	the	same	unknown.
We	may	try	to	recollect	a	formerly	solved	problem	of	this	kind:	And	try	to	think	of	a	familiar	problem
having	the	same	or	a	similar	unknown.	Failing	to	remember	such	a	problem	we	may	try	to	invent	one:
Could	you	think	of	other	data	appropriate	to	determine	the	unknown?

A	new	problem	which	is	more	closely	related	to	the	proposed	problem	has	a	better	chance	of	being
useful.	Therefore,	keeping	the	unknown,	we	try	to	keep	also	some	data	and	some	part	of	the	condition,	and
to	change,	as	little	as	feasible,	only	one	or	two	data	and	a	small	part	of	the	condition.	A	good	method	is
one	in	which	we	omit	something	without	adding	anything;	we	keep	the	unknown,	keep	only	a	part	of	the
condition,	drop	the	other	part,	but	do	not	introduce	any	new	clause	or	datum.	Examples	and	comments	on
this	case	follow	under	7,	8.

5.	Keeping	the	data,	we	may	try	to	introduce	some	useful	and	more	accessible	new	unknown.	Such	an
unknown	must	be	obtained	from	the	original	data	and	we	have	such	an	unknown	in	mind	when	we	ask:
COULD	YOU	DERIVE	SOMETHING	USEFUL	FROM	THE	DATA?

Let	us	observe	that	two	things	are	here	desirable.	First,	the	new	unknown	should	be	more	accessible,
that	is,	more	easily	obtainable	from	the	data	than	the	original	unknown.	Second,	the	new	unknown	should
be	useful,	that	is,	it	should	be,	when	found,	capable	of	rendering	some	definite	service	in	the	search	of	the
original	unknown.	In	short,	the	new	unknown	should	be	a	sort	of	stepping	stone.	A	stone	in	the	middle	of
the	creek	is	nearer	to	me	than	the	other	bank	which	I	wish	to	arrive	at	and,	when	the	stone	is	reached,	it
helps	me	on	toward	the	other	bank.

The	 new	 unknown	 should	 be	 both	 accessible	 and	 useful	 but,	 in	 practice,	 we	 must	 often	 content
ourselves	with	less.	If	nothing	better	presents	itself,	 it	 is	not	unreasonable	to	derive	something	from	the
data	that	has	some	chance	of	being	useful;	and	it	is	also	reasonable	to	try	a	new	unknown	which	is	closely
connected	with	the	original	one,	even	if	it	does	not	seem	particularly	accessible	from	the	outset.

For	 instance,	 if	 our	 problem	 is	 to	 find	 the	 diagonal	 of	 a	 parallelepiped	 (as	 in	 section	 8)	 we	may
introduce	the	diagonal	of	a	face	as	new	unknown.	We	may	do	so	either	because	we	know	that	if	we	have
the	diagonal	of	the	face	we	can	also	obtain	the	diagonal	of	the	solid	(as	in	section	10);	or	we	may	do	so
because	we	see	that	 the	diagonal	of	 the	face	is	easy	to	obtain	and	we	suspect	 that	 it	might	be	useful	 in
finding	the	diagonal	of	the	solid.	(Compare	DID	YOU	USE	ALL	THE	DATA?	1.)

If	our	problem	is	to	construct	a	circle,	we	have	to	find	two	things,	its	center	and	its	radius;	our	problem
has	two	parts,	we	may	say.	In	certain	cases,	one	part	is	more	accessible	than	the	other	and	therefore,	in
any	case,	we	may	reasonably	give	a	moment’s	consideration	to	this	possibility:	Could	you	solve	a	part	of
the	problem?	Asking	this,	we	weigh	the	chances:	Would	it	pay	to	concentrate	just	upon	the	center,	or	just
upon	the	radius,	and	to	choose	one	or	the	other	as	our	new	unknown?	Questions	of	this	sort	are	very	often
useful.	 In	more	complex	or	 in	more	advanced	problems,	 the	decisive	 idea	often	consists	 in	carving	out
some	more	accessible	but	essential	part	from	the	problem.

6.	Changing	both	 the	unknown	and	 the	data	we	deviate	more	 from	our	original	 course	 than	 in	 the
foregoing	 cases.	 This,	 naturally,	 we	 do	 not	 like;	 we	 sense	 the	 danger	 of	 losing	 the	 original	 problem



altogether.	Yet	we	may	be	compelled	to	such	an	extensive	change	if	 less	radical	changes	have	failed	to
produce	 something	 accessible	 and	 useful,	 and	 we	may	 be	 tempted	 to	 recede	 so	 far	 from	 our	 original
problem	if	the	new	problem	has	a	good	chance	of	success.	Could	you	change	the	unknown,	or	the	data,
or	both	if	necessary,	so	that	the	new	unknown	and	the	new	data	are	nearer	to	each	other?

An	interesting	way	of	changing	both	the	unknown	and	the	data	is	interchanging	the	unknown	with	one	of
the	data.	(See	CAN	YOU	USE	THE	RESULT?	3.)

7.	Example.	Construct	a	triangle,	being	given	a	side	a,	the	altitude	h	perpendicular	to	a,	and	the	angle
α	opposite	to	a.
What	is	the	unknown?	A	triangle.
What	are	the	data?	Two	lines,	a	and	h,	and	an	angle	α.
Now,	if	we	are	somewhat	familiar	with	problems	of	geometric	construction,	we	try	to	reduce	such	a

problem	to	the	construction	of	a	point.	We	draw	a	line	BC	equal	to	the	given	side	a;	then	all	that	we	have
to	find	is	the	vertex	of	the	triangle	A,	opposite	to	a,	see	Fig.	16.	We	have,	in	fact,	a	new	problem.

FIG.	16

What	is	the	unknown?	The	point	A.
What	are	the	data?	A	line	h,	an	angle	α,	and	two	points	B	and	C	given	in	position.
What	is	the	condition?	The	perpendicular	distance	of	 the	point	A	 from	the	 line	BC	 should	be	h	and

∠BAC	=	α.
In	fact,	we	have	transformed	our	problem,	changing	both	the	unknown	and	the	data.	The	new	unknown

is	a	point,	the	old	unknown	was	a	triangle.	Some	of	the	data	are	the	same	in	both	problems,	the	line	h	and
the	angle	α;	but	in	the	old	problem	we	were	given	a	length	a	and	now	we	are	given	two	points,	B	and	C,
instead.

The	new	problem	is	not	difficult.	The	following	suggestion	brings	us	quite	near	to	the	solution.
Separate	 the	 various	 parts	 of	 the	 condition.	 The	 condition	 has	 two	 parts,	 one	 concerned	with	 the

datum	h,	the	other	with	the	datum	α.	The	unknown	point	is	required	to	be
(I)	at	distance	h	from	the	line	BC;	and
(II)	the	vertex	of	an	angle	of	given	magnitude	α,	whose	sides	pass	through	the	given	points	B	and	C.
If	 we	 keep	 only	 one	 part	 of	 the	 condition	 and	 drop	 the	 other	 part,	 the	 unknown	 point	 is	 not

completely	determined.	There	are	many	points	satisfying	part	(I)	of	the	condition,	namely	all	points	of	a
parallel	to	the	line	BC	at	the	distance	h	from	BC.2	This	parallel	is	the	locus	of	the	points	satisfying	part	(I)
of	the	condition.	The	locus	of	the	points	satisfying	part	(II)	is	a	certain	circular	arc	whose	end-points	are
B	and	C.	We	can	describe	both	loci;	their	intersection	is	the	point	that	we	desired	to	construct.

The	 procedure	 that	 we	 have	 just	 applied	 has	 a	 certain	 interest;	 solving	 problems	 of	 geometric



construction,	we	can	often	 follow	successfully	 its	pattern:	Reduce	 the	problem	 to	 the	 construction	of	 a
point,	and	construct	the	point	as	an	intersection	of	two	loci.

But	a	certain	step	of	this	procedure	has	a	still	more	general	interest;	solving	“problems	to	find”	of	any
kind,	we	can	follow	its	pattern:	Keep	only	a	part	of	 the	condition,	drop	 the	other	part.	Doing	so,	we
weaken	 the	condition	of	 the	proposed	problem,	we	restrict	 less	 the	unknown.	How	 far	 is	 the	unknown
then	determined,	how	can	it	vary?	By	asking	 this,	we	set,	 in	 fact,	a	new	problem.	If	 the	unknown	is	a
point	in	the	plane	(as	it	was	in	our	example)	the	solution	of	this	new	problem	consists	in	determining	a
locus	described	by	the	point.	If	the	unknown	is	a	mathematical	object	of	some	other	kind	(it	was	a	square
in	section	18)	we	have	to	describe	properly	and	to	characterize	precisely	a	certain	set	of	objects.	Even	if
the	unknown	is	not	a	mathematical	object	(as	in	the	next	example,	under	8)	it	may	be	useful	to	consider,	to
characterize,	 to	describe,	 or	 to	 list	 those	objects	which	 satisfy	 a	 certain	part	 of	 the	 condition	 imposed
upon	the	unknown	by	the	proposed	problem.

8.	Example.	In	a	crossword	puzzle	that	allows	puns	and	anagrams	we	find	the	following	clue:
“Forward	and	backward	part	of	a	machine	(5	letters).”
What	is	the	unknown?	A	word.
What	is	the	condition?	The	word	has	5	letters.	It	has	something	to	do	with	some	part	of	some	machine.

It	should	be,	of	course,	an	English	word,	and	not	a	too	unusual	one,	let	us	hope.
Is	the	condition	sufficient	to	determine	the	unknown?	No.	Or,	rather,	the	condition	may	be	sufficient

but	that	part	of	 the	condition	which	is	clear	by	now	is	certainly	insufficient.	There	are	too	many	words
satisfying	it,	as	“lever,”	or	“screw,”	or	what	not.

The	condition	is	ambiguously	expressed—on	purpose,	of	course.	If	nothing	can	be	found	that	could	be
plausibly	 described	 as	 a	 “forward	 part”	 of	 a	machine	 and	would	 be	 a	 “backward	 part”	 too,	 we	may
suspect	 that	 forward	 and	 backward	 reading	 might	 be	 meant.	 It	 may	 be	 a	 good	 idea	 to	 examine	 this
interpretation	of	the	clue.
Separate	 the	 various	 parts	 of	 the	 condition.	 The	 condition	 has	 two	 parts,	 one	 concerned	with	 the

meaning	of	the	word,	the	other	with	its	spelling.	The	unknown	word	is	required	to	be
(I)	a	short	word	meaning	some	part	of	some	machine;
(II)	 a	word	with	 5	 letters	which	 spelled	 backward	 give	 again	 a	word	meaning	 some	 part	 of	 some

machine.
If	we	keep	only	one	part	of	 the	condition	and	drop	 the	other	part,	 the	unknown	 is	not	 completely

determined.	There	are	many	words	satisfying	part	(I)	of	the	condition,	we	have	a	sort	of	locus.	We	may
“describe”	 this	 locus	 (I),	 “follow”	 it	 to	 its	 “intersection”	 with	 locus	 (II).	 The	 natural	 procedure	 is	 to
concentrate	upon	part	(I)	of	the	condition,	to	recollect	words	having	the	prescribed	meaning	and,	when	we
have	 succeeded	 in	 recollecting	 some	 such	word,	 to	 examine	whether	 it	 has	 or	 has	 not	 the	 prescribed
length	and	can	or	cannot	be	read	backward.	We	may	have	to	recollect	several	words	before	we	run	into
the	right	one:	lever,	screw,	wheel,	shaft,	hinge,	motor.

Of	course,	“rotor”!
9.	Under	3,	we	classified	the	possibilities	of	obtaining	a	new	“problem	to	find”	by	recombining	certain

elements	of	a	proposed	“problem	to	find.”	If	we	do	not	introduce	just	one	new	problem,	but	two	or	more
new	problems,	there	are	more	possibilities	which	we	have	to	mention	but	do	not	attempt	to	classify.

Still	other	possibilities	may	arise.	Especially,	the	solution	of	a	“problem	to	find”	may	depend	on	the
solution	 of	 a	 “problem	 to	 prove.”	We	 just	mention	 this	 important	 possibility;	 considerations	 of	 space
prevent	us	from	discussing	it.

10.	Only	few	and	short	remarks	can	be	added	concerning	“problems	to	prove”;	they	are	analogous	to
the	foregoing	more	extensive	comments	on	“problems	to	find”	(2	to	9).

Having	understood	such	a	problem	as	a	whole,	we	should,	in	general,	examine	its	principal	parts.	The



principal	parts	are	the	hypothesis	and	the	conclusion	of	the	theorem	that	we	are	required	to	prove	or	to
disprove.	We	should	understand	these	parts	thoroughly:	What	is	the	hypothesis?	What	is	the	conclusion?
If	 there	 is	 need	 to	 get	 down	 to	 more	 particular	 points,	 we	 may	 separate	 the	 various	 parts	 of	 the
hypothesis,	 and	 consider	 each	 part	 by	 itself.	 Then	we	may	 proceed	 to	 other	 details,	 decomposing	 the
problem	further	and	further.

After	 having	decomposed	 the	 problem,	we	may	 try	 to	 recombine	 its	 elements	 in	 some	new	manner.
Especially,	we	may	 try	 to	 recombine	 the	elements	 into	another	 theorem.	 In	 this	 respect,	 there	are	 three
possibilities.

(1)	We	keep	the	conclusion	and	change	the	hypothesis.	We	first	try	to	recollect	such	a	theorem:	Look
at	the	conclusion!	And	try	to	think	of	a	familiar	theorem	having	the	same	or	a	similar	conclusion.	If	we
do	 not	 succeed	 in	 recollecting	 such	 a	 theorem	 we	 try	 to	 invent	 one:	 Could	 you	 think	 of	 another
hypothesis	 from	 which	 you	 could	 easily	 derive	 the	 conclusion?	 We	 may	 change	 the	 hypothesis	 by
omitting	something	without	adding	anything:	Keep	only	a	part	of	the	hypothesis,	drop	the	other	part;	is
the	conclusion	still	valid?

(2)	We	keep	the	hypothesis	and	change	the	conclusion:	Could	you	derive	something	useful	from	the
hypothesis?

(3)	We	change	both	the	hypothesis	and	the	conclusion.	We	may	be	more	inclined	to	change	both	if	we
have	had	no	success	in	changing	just	one.	Could	you	change	the	hypothesis,	or	the	conclusion,	or	both	if
necessary,	so	that	the	new	hypothesis	and	the	new	conclusion	are	nearer	to	each	other?

We	do	not	attempt	 to	classify	here	 the	various	possibilities	which	arise	when,	 in	order	 to	 solve	 the
proposed	“problem	to	prove,”	we	introduce	two	or	more	new	“problems	to	prove,”	or	when	we	link	it	up
with	an	appropriate	“problem	to	find.”

Definition	of	a	term	is	a	statement	of	its	meaning	in	other	terms	which	are	supposed	to	be	well	known.
1.	Technical	terms	in	mathematics	are	of	two	kinds.	Some	are	accepted	as	primitive	terms	and	are	not

defined.	Others	 are	 considered	 as	 derived	 terms	 and	 are	 defined	 in	 due	 form;	 that	 is,	 their	meaning	 is
stated	in	primitive	terms	and	in	formerly	defined	derived	terms.	Thus,	we	do	not	give	a	formal	definition
of	such	primitive	notions	as	point,	straight	line,	and	plane.3	Yet	we	give	formal	definitions	of	such	notions
as	“bisector	of	an	angle”	or	“circle”	or	“parabola.”

The	definition	of	the	last	quoted	term	may	be	stated	as	follows.	We	call	parabola	the	locus	of	points
which	are	at	equal	distance	from	a	fixed	point	and	a	fixed	straight	line.	The	fixed	point	is	called	the	focus
of	 the	parabola,	 the	 fixed	 line	 its	directrix.	 It	 is	understood	 that	all	 elements	considered	are	 in	a	 fixed
plane,	and	that	the	fixed	point	(the	focus)	is	not	on	the	fixed	line	(the	directrix).

The	reader	is	not	supposed	to	know	the	meaning	of	the	terms	defined:	parabola,	focus	of	the	parabola,
directrix	of	the	parabola.	But	he	is	supposed	to	know	the	meaning	of	all	the	other	terms	as	point,	straight
line,	plane,	distance	of	a	point	from	another	point,	fixed,	locus,	etc.

2.	Definitions	in	dictionaries	are	not	very	much	different	from	mathematical	definitions	in	the	outward
form	but	they	are	written	in	a	different	spirit.

The	writer	of	a	dictionary	is	concerned	with	the	current	meaning	of	the	words.	He	accepts,	of	course,
the	current	meaning	and	states	it	as	neatly	as	he	can	in	form	of	a	definition.

The	 mathematician	 is	 not	 concerned	 with	 the	 current	 meaning	 of	 his	 technical	 terms,	 at	 least	 not
primarily	concerned	with	that.	What	“circle”	or	“parabola”	or	other	technical	terms	of	this	kind	may	or
may	 not	 denote	 in	 ordinary	 speech	 matters	 little	 to	 him.	 The	 mathematical	 definition	 creates	 the
mathematical	meaning.

3.	Example.	Construct	 the	point	 of	 intersection	of	 a	given	 straight	 line	 and	 a	parabola	of	which	 the
focus	and	the	directrix	are	given.



Our	approach	to	any	problem	must	depend	on	the	state	of	our	knowledge.	Our	approach	to	the	present
problem	depends	mainly	on	the	extent	of	our	acquaintance	with	the	properties	of	the	parabola.	If	we	know
much	about	the	parabola	we	try	to	make	use	of	our	knowledge	and	to	extract	something	helpful	from	it:	Do
you	 know	a	 theorem	 that	 could	 be	 useful?	Do	 you	 know	a	 related	 problem?	 If	we	 know	 little	 about
parabola,	 focus,	 and	directrix,	 these	 terms	are	 rather	 embarrassing	and	we	naturally	wish	 to	get	 rid	of
them.	How	can	we	get	rid	of	them?	Let	us	listen	to	the	dialogue	of	the	teacher	and	the	student	discussing
the	proposed	problem.	They	have	chosen	already	a	suitable	notation:	P	for	any	of	the	unknown	points	of
intersection,	F	for	the	focus,	d	for	the	directrix,	c	for	the	straight	line	intersecting	the	parabola.

“And	what	is	the	unknown?”
“The	point	P.”
“What	are	the	data?”
“The	straight	lines	c	and	d,	and	the	point	F.”
“What	is	the	condition?”
“P	is	a	point	of	intersection	of	the	straight	line	c	and	of	the	parabola	whose	directrix	is	d	and	focus	F.”
“Correct.	You	 had	 little	 opportunity,	 I	 know,	 to	 study	 the	 parabola	 but	 you	 can	 say,	 I	 think,	what	 a

parabola	is.”
“The	parabola	is	the	locus	of	points	equidistant	from	the	focus	and	the	directrix.”
“Correct.	You	 remember	 the	 definition	 correctly.	That	 is	 right,	 but	we	must	 also	 use	 it;	go	 back	 to

definitions.	By	virtue	of	the	definition	of	the	parabola,	what	can	you	say	about	your	point	P?”
“P	is	on	the	parabola.	Therefore,	P	is	equidistant	from	d	and	F.”
“Good!	Draw	a	figure.”

FIG.	17

The	student	introduces	into	Fig.	17	the	lines	PF	and	PQ,	this	latter	being	the	perpendicular	to	d	from	P.
“Now,	could	you	restate	the	problem?”
.	.	.	.	.
“Could	you	restate	the	condition	of	the	problem,	using	the	lines	you	have	just	introduced?”
“P	is	a	point	on	the	line	c	such	that	PF	=	PQ.”
“Good.	But	please,	say	it	in	words:	What	is	PQ?”
“The	perpendicular	distance	of	P	from	d.”
“Good.	Could	you	restate	the	problem	now?	But	please,	state	it	neatly,	in	a	round	sentence.”
“Construct	a	point	P	on	the	given	straight	line	c	at	equal	distances	from	the	given	point	F	and	the	given

straight	line	d.”



“Observe	 the	progress	 from	 the	original	 statement	 to	your	 restatement.	The	original	 statement	of	 the
problem	was	full	of	unfamiliar	technical	terms,	parabola,	focus,	directrix;	it	sounded	just	a	little	pompous
and	 inflated.	 And	 now,	 nothing	 remains	 of	 those	 unfamiliar	 technical	 terms;	 you	 have	 deflated	 the
problem.	Well	done!”

4.	Elimination	of	technical	terms	is	the	result	of	the	work	in	the	foregoing	example.	We	started	from	a
statement	of	 the	problem	containing	certain	 technical	 terms	 (parabola,	 focus,	directrix)	 and	we	arrived
finally	at	a	restatement	free	of	those	terms.

In	order	 to	 eliminate	a	 technical	 term	we	must	know	 its	definition;	but	 it	 is	not	 enough	 to	know	 the
definition,	we	must	use	it.	In	the	foregoing	example,	it	was	not	enough	to	remember	the	definition	of	the
parabola.	The	decisive	 step	was	 to	 introduce	 into	 the	 figure	 the	 lines	PF	 and	PQ	whose	 equality	was
granted	by	 the	definition	of	 the	parabola.	This	 is	 the	 typical	procedure.	We	introduce	suitable	elements
into	 the	 conception	 of	 the	 problem.	On	 the	 basis	 of	 the	 definition,	we	 establish	 relations	 between	 the
elements	we	introduced.	If	these	relations	express	completely	the	meaning,	we	have	used	the	definition.
Having	used	its	definition,	we	have	eliminated	the	technical	term.

The	procedure	just	described	may	be	called	going	back	to	definitions.
By	going	back	to	the	definition	of	a	technical	term,	we	get	rid	of	the	term	but	introduce	new	elements

and	new	relations	 instead.	The	resulting	change	 in	our	conception	of	 the	problem	may	be	 important.	At
any	rate,	some	restatement,	some	VARIATION	OF	THE	PROBLEM	is	bound	to	result.

5.	Definitions	and	known	theorems.	If	we	know	the	name	“parabola”	and	have	some	vague	idea	of	the
shape	of	the	curve	but	do	not	know	anything	else	about	it,	our	knowledge	is	obviously	insufficient	to	solve
the	problem	proposed	as	example,	or	any	other	serious	geometric	problem	about	the	parabola.	What	kind
of	knowledge	is	needed	for	such	a	purpose?

The	science	of	geometry	may	be	considered	as	consisting	of	axioms,	definitions,	 and	 theorems.	The
parabola	is	not	mentioned	in	the	axioms	which	deal	only	with	such	primitive	terms	as	point,	straight	line,
and	 so	 on.	 Any	 geometric	 argumentation	 concerned	 with	 the	 parabola,	 the	 solution	 of	 any	 problem
involving	it,	must	use	either	its	definition	or	theorems	about	it.	To	solve	such	a	problem,	we	must	know,	at
least,	the	definition	but	it	is	better	to	know	some	theorems	too.

What	 we	 said	 about	 the	 parabola	 is	 true,	 of	 course,	 of	 any	 derived	 notion.	 As	 we	 start	 solving	 a
problem	that	involves	such	a	notion,	we	cannot	know	yet	what	will	be	preferable	to	use,	the	definition	of
the	notion,	or	some	theorem	about	it;	but	it	is	certain	that	we	have	to	use	one	or	the	other.

There	are	cases,	however,	 in	which	we	have	no	choice.	If	we	know	just	 the	definition	of	the	notion,
and	 nothing	 else,	 then	 we	 are	 obliged	 to	 use	 the	 definition.	 If	 we	 do	 not	 know	 much	 more	 than	 the
definition,	our	best	chance	may	be	to	go	back	to	the	definition.	But	if	we	know	many	theorems	about	the
notion,	 and	 have	much	 experience	 in	 its	 use,	 there	 is	 some	 chance	 that	we	may	 get	 hold	 of	 a	 suitable
theorem	involving	it.

6.	Several	definitions.	The	sphere	is	usually	defined	as	the	locus	of	points	at	a	given	distance	from	a
given	point.	(The	points	are	now	in	space,	not	restricted	to	a	plane.)	Yet	the	sphere	could	also	be	defined
as	the	surface	described	by	a	circle	revolving	about	a	diameter.	Still	other	definitions	of	the	sphere	are
known,	and	many	others	possible.

When	 we	 have	 to	 solve	 a	 proposed	 problem	 involving	 some	 derived	 notion,	 as	 “sphere”	 or
“parabola,”	and	we	wish	to	go	back	to	its	definition,	we	may	have	a	choice	among	various	definitions.
Much	may	depend	in	such	a	case	on	choosing	the	definition	that	fits	the	case.

To	find	the	area	of	the	surface	of	the	sphere	was,	at	the	time	Archimedes	solved	it,	a	great	and	difficult
problem.	Archimedes	had	the	choice	between	the	definitions	of	the	sphere	we	just	quoted.	He	preferred	to
conceive	the	sphere	as	the	surface	generated	by	a	circle	revolving	about	a	fixed	diameter.	He	inscribes	in
the	circle	a	 regular	polygon,	with	an	even	number	of	 sides,	of	which	 the	 fixed	diameter	 joins	opposite



vertices.	The	regular	polygon	approximates	the	circle	and,	revolving	with	the	circle,	generates	a	convex
surface	 composed	 of	 two	 cones	 with	 vertices	 at	 the	 extremities	 of	 the	 fixed	 diameter	 and	 of	 several
frustums	of	cones	in	between.	This	composite	surface	approximates	the	sphere	and	is	used	by	Archimedes
in	computing	the	area	of	the	surface	of	the	sphere.	If	we	conceive	the	sphere	as	the	locus	of	points	equally
distant	from	the	center,	no	such	simple	approximation	to	its	surface	is	suggested.

7.	Going	back	to	definitions	is	important	in	inventing	an	argument	but	it	is	also	important	in	checking	it.
Somebody	presents	an	alleged	new	solution	of	Archimedes’	problem	of	finding	the	area	of	the	surface

of	the	sphere.	If	he	has	only	a	vague	idea	of	the	sphere,	his	solution	will	not	be	any	good.	He	may	have	a
clear	idea	of	the	sphere	but	if	he	fails	to	use	this	idea	in	his	argument	I	cannot	know	that	he	had	any	idea	at
all,	and	his	argument	is	no	good.	Therefore,	listening	to	the	argument,	I	am	waiting	for	the	moment	when
he	is	going	to	say	something	substantial	about	the	sphere,	to	use	its	definition	or	some	theorem	about	it.	If
such	a	moment	never	comes,	the	solution	is	no	good.

We	should	check	not	only	the	arguments	of	others	but,	of	course,	also	our	own	arguments,	in	the	same
way.	Have	you	taken	into	account	all	essential	notions	involved	in	the	problem?	How	did	you	use	this
notion?	Did	you	use	its	meaning,	its	definition?	Did	you	use	essential	facts,	known	theorems	about	it?

That	going	back	to	definitions	is	important	in	examining	the	validity	of	an	argument	was	emphasized	by
Pascal	who	stated	the	rule:	“Substituer	mentalement	les	définitions	à	la	place	des	définis.”	The	meaning
is:	“Substitute	mentally	 the	defining	 facts	 for	 the	defined	 terms.”	That	going	back	 to	definitions	 is	 also
important	in	devising	an	argument	was	emphasized	by	Hadamard.

8.	Going	back	to	definitions	is	an	important	operation	of	the	mind.	If	we	wish	to	understand	why	the
definitions	of	words	are	so	important,	we	should	realize	first	that	words	are	important.	We	can	hardly	use
our	mind	without	 using	words,	 or	 signs,	 or	 symbols	 of	 some	 sort.	Thus,	words	 and	 signs	have	power.
Primitive	peoples	believe	that	words	and	symbols	have	magic	power.	We	may	understand	such	belief	but
we	 should	not	 share	 it.	We	 should	know	 that	 the	power	of	 a	word	does	not	 reside	 in	 its	 sound,	 in	 the
“vocis	flatus,”	 in	 the	“hot	air”	produced	by	the	speaker,	but	 in	 the	 ideas	of	which	 the	word	reminds	us
and,	ultimately,	in	the	facts	on	which	the	ideas	are	based.

Therefore,	 it	 is	 a	 sound	 tendency	 to	 seek	 meaning	 and	 facts	 behind	 the	 words.	 Going	 back	 to
definitions,	the	mathematician	seeks	to	get	hold	of	the	actual	relations	of	mathematical	objects	behind	the
technical	 terms,	as	 the	physicist	seeks	definite	experiments	behind	his	 technical	 terms,	and	 the	common
man	with	some	common	sense	wants	to	get	down	to	hard	facts	and	not	to	be	fooled	by	mere	words.

Descartes,	 René	 (1596-1650),	 great	 mathematician	 and	 philosopher,	 planned	 to	 give	 a	 universal
method	to	solve	problems	but	he	left	unfinished	his	Rules	for	the	Direction	of	the	Mind.	The	fragments	of
this	treatise,	found	in	his	manuscripts	and	printed	after	his	death,	contain	more—and	more	interesting—
materials	 concerning	 the	 solution	 of	 problems	 than	 his	 better	 known	 work	Discours	 de	 la	 Méthode
although	the	“Discours”	was	very	likely	written	after	the	“Rules.”	The	following	lines	of	Descartes	seem
to	describe	the	origin	of	the	“Rules”:	“As	a	young	man,	when	I	heard	about	ingenious	inventions,	I	tried	to
invent	them	by	myself,	even	without	reading	the	author.	In	doing	so,	I	perceived,	by	degrees,	 that	I	was
making	use	of	certain	rules.”

Determination,	 hope,	 success.	 It	 would	 be	 a	 mistake	 to	 think	 that	 solving	 problems	 is	 a	 purely
“intellectual	 affair”;	 determination	 and	 emotions	 play	 an	 important	 role.	 Lukewarm	 determination	 and
sleepy	 consent	 to	 do	 a	 little	 something	may	be	 enough	 for	 a	 routine	 problem	 in	 the	 classroom.	But,	 to
solve	 a	 serious	 scientific	 problem,	 will	 power	 is	 needed	 that	 can	 outlast	 years	 of	 toil	 and	 bitter
disappointments.

1.	 Determination	 fluctuates	 with	 hope	 and	 hopelessness,	 with	 satisfaction	 and	 disappointment.	 It	 is
easy	to	keep	on	going	when	we	think	that	the	solution	is	just	around	the	corner;	but	it	is	hard	to	persevere



when	we	do	not	see	any	way	out	of	 the	difficulty.	We	are	elated	when	our	forecast	comes	true.	We	are
depressed	 when	 the	 way	 we	 have	 followed	 with	 some	 confidence	 is	 suddenly	 blocked,	 and	 our
determination	wavers.

“Il	 n’est	 point	 besoin	 espérer	 pour	 entreprendre	 ni	 réussir	 pour	 persévérer.”	 “You	 can	 undertake
without	hope	and	persevere	without	success.”	Thus	may	speak	an	inflexible	will,	or	honor	and	duty,	or	a
nobleman	with	a	noble	cause.	This	sort	of	determination,	however,	would	not	do	for	 the	scientist,	who
should	have	 some	hope	 to	 start	with,	 and	 some	 success	 to	go	on.	 In	 scientific	work,	 it	 is	 necessary	 to
apportion	wisely	determination	to	outlook.	You	do	not	take	up	a	problem,	unless	it	has	some	interest;	you
settle	down	to	work	seriously	 if	 the	problem	seems	 instructive;	you	 throw	in	your	whole	personality	 if
there	 is	 a	 great	 promise.	 If	 your	 purpose	 is	 set,	 you	 stick	 to	 it,	 but	 you	 do	 not	make	 it	 unnecessarily
difficult	for	yourself.	You	do	not	despise	little	successes,	on	the	contrary,	you	seek	them:	If	you	cannot
solve	the	proposed	problem	try	to	solve	first	some	related	problem.

2.	When	a	student	makes	really	silly	blunders	or	is	exasperatingly	slow,	the	trouble	is	almost	always
the	same;	he	has	no	desire	at	all	to	solve	the	problem,	even	no	desire	to	understand	it	properly,	and	so	he
has	not	understood	it.	Therefore,	a	teacher	wishing	seriously	to	help	the	student	should,	first	of	all,	stir	up
his	curiosity,	give	him	some	desire	to	solve	the	problem.	The	teacher	should	also	allow	some	time	to	the
student	to	make	up	his	mind,	to	settle	down	to	his	task.

Teaching	to	solve	problems	is	education	of	the	will.	Solving	problems	which	are	not	too	easy	for	him,
the	student	learns	to	persevere	through	unsuccess,	to	appreciate	small	advances,	to	wait	for	the	essential
idea,	 to	 concentrate	with	 all	 his	might	when	 it	 appears.	 If	 the	 student	 had	 no	 opportunity	 in	 school	 to
familiarize	himself	with	the	varying	emotions	of	the	struggle	for	the	solution	his	mathematical	education
failed	in	the	most	vital	point.

Diagnosis	 is	 used	 here	 as	 a	 technical	 term	 in	 education	 meaning	 “closer	 characterization	 of	 the
student’s	work.”	A	grade	characterizes	the	student’s	work	but	somewhat	crudely.	The	teacher,	wishing	to
improve	 the	 student’s	 work,	 needs	 a	 closer	 characterization	 of	 good	 and	 bad	 points	 as	 the	 physician,
wishing	to	improve	the	patient’s	health,	needs	a	diagnosis.

We	 are	 here	 particularly	 concerned	with	 the	 student’s	 efficiency	 in	 solving	 problems.	How	 can	we
characterize	it?	We	may	derive	some	profit	from	the	distinction	of	the	four	phases	of	the	solution.	In	fact,
the	behavior	of	the	students	in	the	various	phases	is	quite	characteristic.

Incomplete	 understanding	 of	 the	 problem,	 owing	 to	 lack	 of	 concentration,	 is	 perhaps	 the	 most
widespread	deficiency	in	solving	problems.	With	respect	to	devising	a	plan	and	obtaining	a	general	idea
of	 the	 solution	 two	opposite	 faults	 are	 frequent.	Some	students	 rush	 into	calculations	and	constructions
without	any	plan	or	general	idea;	others	wait	clumsily	for	some	idea	to	come	and	cannot	do	anything	that
would	 accelerate	 its	 coming.	 In	carrying	out	 the	plan,	 the	most	 frequent	 fault	 is	 carelessness,	 lack	 of
patience	in	checking	each	step.	Failure	to	check	the	result	at	all	is	very	frequent;	the	student	is	glad	to	get
an	answer,	throws	down	his	pencil,	and	is	not	shocked	by	the	most	unlikely	results.

The	 teacher,	 having	made	 a	 careful	 diagnosis	 of	 a	 fault	 of	 this	 kind,	 has	 some	 chance	 to	 cure	 it	 by
insisting	on	certain	questions	of	the	list.

Did	you	use	 all	 the	data?	Owing	 to	 the	 progressive	mobilization	 of	 our	 knowledge,	 there	will	 be
much	 more	 in	 our	 conception	 of	 the	 problem	 at	 the	 end	 than	 was	 in	 it	 at	 the	 outset	 (PROGRESS	 AND
ACHIEVEMENT,	1).	But	how	is	it	now?	Have	we	got	what	we	need?	Is	our	conception	adequate?	Did	you
use	all	the	data?	Did	you	use	the	whole	condition?	The	corresponding	question	concerning	“problems	to
prove”	is:	Did	you	use	the	whole	hypothesis?

1.	For	an	illustration,	let	us	go	back	to	the	“parallelepiped	problem”	stated	in	section	8	(and	followed
up	in	sections	10,	12,	14,	15).	It	may	happen	that	a	student	runs	into	the	idea	of	calculating	the	diagonal	of



a	face,	 ,	but	then	he	gets	stuck.	The	teacher	may	help	him	by	asking:	Did	you	use	all	the
data?	The	student	can	scarcely	 fail	 to	observe	 that	 the	expression	 	does	not	 contain	 the
third	datum	c.	Therefore,	he	should	 try	 to	bring	c	 into	play.	Thus,	he	has	a	good	chance	 to	observe	 the
decisive	 right	 triangle	 whose	 legs	 are	 	 and	 c,	 and	 whose	 hypotenuse	 is	 the	 desired
diagonal	of	the	parallelepiped.	(For	another	illustration	see	AUXILIARY	ELEMENTS,	3.)

The	 questions	we	 discuss	 here	 are	 very	 important.	 Their	 use	 in	 constructing	 the	 solution	 is	 clearly
shown	 by	 the	 foregoing	 example.	 They	 may	 help	 us	 to	 find	 the	 weak	 spot	 in	 our	 conception	 of	 the
problem.	They	may	point	out	a	missing	element.	When	we	know	that	a	certain	element	is	still	missing,	we
naturally	try	to	bring	it	into	play.	Thus,	we	have	a	clue,	we	have	a	definite	line	of	inquiry	to	follow,	and
have	a	good	chance	to	meet	with	the	decisive	idea.

2.	The	questions	we	discussed	are	helpful	not	only	in	constructing	an	argument	but	also	in	checking	it.
In	order	to	be	more	concrete,	let	us	assume	that	we	have	to	check	the	proof	of	a	theorem	whose	hypothesis
consists	of	three	parts,	all	three	essential	to	the	truth	of	the	theorem.	That	is,	if	we	discard	any	part	of	the
hypothesis,	the	theorem	ceases	to	be	true.	Therefore,	if	the	proof	neglects	to	use	any	part	of	the	hypothesis,
the	 proof	must	 be	wrong.	Does	 the	 proof	use	 the	whole	 hypothesis?	 Does	 it	 use	 the	 first	 part	 of	 the
hypothesis?	Where	does	it	use	the	first	part	of	the	hypothesis?	Where	does	it	use	the	second	part?	Where
the	third?	Answering	to	all	these	questions	we	check	the	proof.

This	sort	of	checking	is	effective,	 instructive,	and	almost	necessary	for	thorough	understanding	if	 the
argument	is	long	and	heavy—as	THE	INTELLIGENT	READER	should	know.

3.	The	questions	we	discussed	aim	at	examining	the	completeness	of	our	conception	of	 the	problem.
Our	conception	is	certainly	incomplete	if	we	fail	to	take	into	account	any	essential	datum	or	condition	or
hypothesis.	But	it	is	also	incomplete	if	we	fail	to	realize	the	meaning	of	some	essential	term.	Therefore,	in
order	to	examine	our	conception,	we	should	also	ask:	Have	you	taken	into	account	all	essential	notions
involved	in	the	problem?	See	DEFINITION,	7.

4.	 The	 foregoing	 remarks,	 however,	 are	 subject	 to	 caution	 and	 certain	 limitations.	 In	 fact,	 their
straightforward	application	is	restricted	to	problems	which	are	“perfectly	stated”	and	“reasonable.”

A	perfectly	 stated	 and	 reasonable	 “problem	 to	 find”	must	 have	 all	 necessary	 data	 and	 not	 a	 single
superfluous	 datum;	 also	 its	 condition	 must	 be	 just	 sufficient,	 neither	 contradictory	 nor	 redundant.	 In
solving	such	a	problem,	we	have	to	use,	of	course,	all	the	data	and	the	whole	condition.

The	object	of	a	“problem	to	prove”	is	a	mathematical	theorem.	If	the	problem	is	perfectly	stated	and
reasonable,	each	clause	in	the	hypothesis	of	the	theorem	must	be	essential	 to	the	conclusion.	In	proving
such	a	theorem	we	have	to	use,	of	course,	each	clause	of	the	hypothesis.

Mathematical	 problems	 proposed	 in	 traditional	 textbooks	 are	 supposed	 to	 be	 perfectly	 stated	 and
reasonable.	We	should	however	not	 rely	 too	much	on	 this;	when	there	 is	 the	slightest	doubt,	we	should
ask:	IS	 IT	POSSIBLE	TO	SATISFY	THE	CONDITION?	Trying	to	answer	 this	question,	or	a	similar	one,	we	may
convince	ourselves,	at	least	to	a	certain	extent,	that	our	problem	is	as	good	as	it	is	supposed	to	be.

The	 question	 stated	 in	 the	 title	 of	 the	 present	 article	 and	 allied	 questions	may	 and	 should	 be	 asked
without	modification	only	when	we	know	that	the	problem	before	us	is	reasonable	and	perfectly	stated	or
when,	at	least,	we	have	no	reason	to	suspect	the	contrary.

5.	There	are	some	nonmathematical	problems	which	may	be,	in	a	certain	sense,	“perfectly	stated.”	For
instance,	 good	 chess	 problems	 are	 supposed	 to	 have	 but	 one	 solution	 and	 no	 superfluous	 piece	 on	 the
chessboard,	etc.

PRACTICAL	 PROBLEMS	 however	 are	 usually	 far	 from	 being	 perfectly	 stated	 and	 require	 a	 thorough
reconsideration	of	the	questions	discussed	in	the	present	article.

Do	you	know	a	 related	problem?	We	 can	 scarcely	 imagine	 a	 problem	 absolutely	 new,	 unlike	 and



unrelated	 to	any	formerly	solved	problem;	but,	 if	such	a	problem	could	exist,	 it	would	be	 insoluble.	 In
fact,	when	solving	a	problem,	we	always	profit	from	previously	solved	problems,	using	their	result,	or
their	method,	or	the	experience	we	acquired	solving	them.	And,	of	course,	the	problems	from	which	we
profit	must	be	in	some	way	related	to	our	present	problem.	Hence	the	question:	Do	you	know	a	related
problem?

There	 is	 usually	 no	 difficulty	 at	 all	 in	 recalling	 formerly	 solved	 problems	which	 are	more	 or	 less
related	 to	 our	 present	 one.	 On	 the	 contrary,	 we	 may	 find	 too	 many	 such	 problems	 and	 there	 may	 be
difficulty	in	choosing	a	useful	one.	We	have	to	look	around	for	closely	related	problems;	we	LOOK	AT	THE
UNKNOWN,	 or	 we	 look	 for	 a	 formerly	 solved	 problem	 which	 is	 linked	 to	 our	 present	 one	 by
GENERALIZATION,	SPECIALIZATION,	or	ANALOGY.

The	question	we	discuss	here	aims	at	the	mobilization	of	our	formerly	acquired	knowledge	(PROGRESS
AND	ACHIEVEMENT,	1).	An	essential	part	of	our	mathematical	knowledge	is	stored	in	the	form	of	formerly
proved	theorems.	Hence	the	question:	Do	you	know	a	theorem	that	could	be	useful?	This	question	may
be	particularly	suitable	when	our	problem	 is	a	“problem	 to	prove,”	 that	 is,	when	we	have	 to	prove	or
disprove	a	proposed	theorem.

Draw	a	figure;	see	FIGURES.	Introduce	suitable	notation;	see	NOTATION.

Examine	your	guess.	Your	guess	may	be	right,	but	 it	 is	 foolish	 to	accept	a	vivid	guess	as	a	proven
truth—as	primitive	people	often	do.	Your	guess	may	be	wrong.	But	it	is	also	foolish	to	disregard	a	vivid
guess	altogether—as	pedantic	people	sometimes	do.	Guesses	of	a	certain	kind	deserve	 to	be	examined
and	taken	seriously:	those	which	occur	to	us	after	we	have	attentively	considered	and	really	understood	a
problem	in	which	we	are	genuinely	interested.	Such	guesses	usually	contain	at	least	a	fragment	of	the	truth
although,	of	course,	they	very	seldom	show	the	whole	truth.	Yet	there	is	a	chance	to	extract	the	whole	truth
if	we	examine	such	a	guess	appropriately.

Many	a	guess	has	turned	out	to	be	wrong	but	nevertheless	useful	in	leading	to	a	better	one.
No	idea	is	really	bad,	unless	we	are	uncritical.	What	is	really	bad	is	to	have	no	idea	at	all.
1.	Don’t.	Here	is	a	typical	story	about	Mr.	John	Jones.	Mr.	Jones	works	in	an	office.	He	had	hoped	for

a	little	raise	but	his	hope,	as	hopes	often	are,	was	disappointed.	The	salaries	of	some	of	his	colleagues
were	raised	but	not	his.	Mr.	Jones	could	not	take	it	calmly.	He	worried	and	worried	and	finally	suspected
that	Director	Brown	was	responsible	for	his	failure	in	getting	a	raise.

We	 cannot	 blame	Mr.	 Jones	 for	 having	 conceived	 such	 a	 suspicion.	There	were	 indeed	 some	 signs
pointing	to	Director	Brown.	The	real	mistake	was	that,	after	having	conceived	that	suspicion,	Mr.	Jones
became	blind	to	all	signs	pointing	in	the	opposite	direction.	He	worried	himself	into	firmly	believing	that
Director	Brown	was	his	personal	enemy	and	behaved	so	stupidly	that	he	almost	succeeded	in	making	a
real	enemy	of	the	director.

The	 trouble	 with	Mr.	 John	 Jones	 is	 that	 he	 behaves	 like	 most	 of	 us.	 He	 never	 changes	 his	 major
opinions.	He	changes	his	minor	opinions	not	infrequently	and	quite	suddenly;	but	he	never	doubts	any	of
his	 opinions,	 major	 or	 minor,	 as	 long	 as	 he	 has	 them.	 He	 never	 doubts	 them,	 or	 questions	 them,	 or
examines	 them	 critically—he	 would	 especially	 hate	 critical	 examination,	 if	 he	 understood	 what	 that
meant.

Let	us	concede	that	Mr.	John	Jones	is	right	to	a	certain	extent.	He	is	a	busy	man;	he	has	his	duties	at	the
office	and	at	home.	He	has	little	time	for	doubt	or	examination.	At	best,	he	could	examine	only	a	few	of
his	convictions	and	why	should	he	doubt	one	if	he	has	no	time	to	examine	that	doubt?

Still,	don’t	do	as	Mr.	John	Jones	does.	Don’t	let	your	suspicion,	or	guess,	or	conjecture,	grow	without
examination	till	 it	becomes	ineradicable.	At	any	rate,	 in	 theoretical	matters,	 the	best	of	 ideas	 is	hurt	by
uncritical	acceptance	and	thrives	on	critical	examination.



2.	 A	 mathematical	 example.	 Of	 all	 quadrilaterals	 with	 given	 perimeter,	 find	 the	 one	 that	 has	 the
greatest	area.
What	is	the	unknown?	A	quadrilateral.
What	are	the	data?	The	perimeter	of	the	quadrilateral	is	given.
What	 is	 the	 condition?	 The	 required	 quadrilateral	 should	 have	 a	 greater	 area	 than	 any	 other

quadrilateral	with	the	same	perimeter.
This	 problem	 is	 very	different	 from	 the	 usual	 problems	 in	 elementary	 geometry	 and,	 therefore,	 it	 is

quite	natural	to	start	guessing.
Which	quadrilateral	is	likely	to	be	the	one	with	the	greatest	area?	What	would	be	the	simplest	guess?

We	may	have	heard	 that	of	all	 figures	with	 the	same	perimeter	 the	circle	has	 the	greatest	area;	we	may
even	suspect	some	reason	for	the	plausibility	of	this	statement.	Now,	which	quadrilateral	comes	nearest	to
the	circle?	Which	one	comes	nearest	to	it	in	symmetry?

The	square	is	a	pretty	obvious	guess.	If	we	take	this	guess	seriously,	we	should	realize	what	it	means.
We	 should	 have	 the	 courage	 to	 state	 it:	 “Of	 all	 quadrilaterals	with	 given	 perimeter	 the	 square	 has	 the
greatest	area.”	If	we	decide	ourselves	to	examine	this	statement,	the	situation	changes.	Originally,	we	had
a	“problem	to	find.”	After	having	formulated	our	guess,	we	have	a	“problem	to	prove”;	we	have	to	prove
or	disprove	the	theorem	formulated.

If	we	do	not	know	any	problem	similar	to	ours	that	has	been	solved	before,	we	may	find	our	task	pretty
tough.	 If	 you	 cannot	 solve	 the	proposed	problem,	 try	 to	 solve	 first	 some	 related	problem.	Could	 you
solve	a	part	of	 the	problem?	 It	may	occur	 to	us	 that	 if	 the	square	 is	privileged	among	quadrilaterals	 it
must,	by	that	very	fact,	also	be	privileged	among	rectangles.	A	part	of	our	problem	would	be	solved	if	we
could	succeed	in	proving	the	following	statement:	“Of	all	rectangles	with	given	perimeter	the	square	has
the	greatest	area.”

This	theorem	appears	more	accessible	than	the	former;	it	is,	of	course,	weaker.	At	any	rate,	we	should
realize	 what	 it	 means;	 we	 should	 have	 the	 courage	 to	 restate	 it	 in	 more	 detail.	 We	 can	 restate	 it
advantageously	in	the	language	of	algebra.

The	area	of	a	rectangle	with	adjacent	sides	a	and	b	is	ab.	Its	perimeter	is	2a	+	2b.

One	side	of	the	square	that	has	the	same	perimeter	as	the	rectangle	just	mentioned	is	 .	Thus,

the	 area	of	 this	 square	 is	 .	 It	 should	 be	 greater	 than	 the	 area	 of	 the	 rectangle,	 and	 so	we

should	have

Is	this	true?	The	same	assertion	can	be	written	in	the	equivalent	form

a2	+	2ab	+	b2	>	4ab.

This,	however,	is	true,	for	it	is	equivalent	to

a2	−	2ab	+	b2	>	0

or	to

(a	−	b)2	>	0



and	this	inequality	certainly	holds,	unless	a	=	b,	that	is,	the	rectangle	examined	is	a	square.
We	have	 not	 solved	 our	 problem	yet,	 but	we	have	made	 some	progress	 just	 by	 facing	 squarely	 our

rather	obvious	guesses.
3.	A	nonmathematical	 example.	 In	 a	 certain	 crossword	 puzzle	we	 have	 to	 find	 a	word	with	 seven

letters,	and	the	clue	is:	“Do	the	walls	again,	back	and	forth.”4
What	is	the	unknown?	A	word.
What	are	the	data?	The	length	of	the	word	is	given;	it	has	seven	letters.
What	 is	 the	condition?	 It	 is	 stated	 in	 the	clue.	 It	has	something	 to	do	with	walls,	yet	 it	 is	 still	very

hazy.
Thus,	we	have	to	reexamine	the	clue.	As	we	do	so,	the	last	part	may	catch	our	attention:	“.	 .	 .	again,

back	and	forth.”	Could	you	solve	a	part	of	the	problem?	Here	is	a	chance	to	guess	the	beginning	of	the
word.	Since	the	repetition	is	so	strongly	emphasized,	the	word,	quite	possibly,	might	start	with	“re.”	This
is	 a	pretty	obvious	guess.	 If	we	are	 tempted	 to	believe	 it,	we	 should	 realize	what	 it	means.	The	word
required	would	look	thus:

R	E	-	-	-	-	-

Can	you	check	 the	result?	 If	another	word	of	 the	puzzle	crosses	 the	one	 just	considered	 in	 the	 first
letter,	we	have	an	R	to	start	that	other	word.	It	may	be	a	good	idea	to	switch	to	that	other	word	and	check
the	R.	If	we	succeed	in	verifying	that	R	or	if,	at	least,	we	do	not	find	any	reason	against	it,	we	come	back
to	our	original	word.	We	ask	again:	What	is	the	condition?	As	we	reexamine	the	clue,	the	very	last	part
may	catch	our	attention:	“.	.	.	back	and	forth.”	Could	this	imply	that	the	word	we	seek	can	be	read	not	only
forward	 but	 backward?	This	 is	 a	 less	 obvious	 guess	 (yet	 there	 are	 such	 cases,	 see	DECOMPOSING	 AND
RECOMBINING,	8).

At	any	rate,	let	us	face	this	guess;	let	us	realize	what	it	means.	The	word	would	look	as	follows:

RE	-	-	-	ER.

Moreover,	 the	third	letter	should	be	the	same	as	the	fifth;	 it	 is	very	likely	a	consonant	and	the	fourth	or
middle	letter	a	vowel.

The	reader	can	now	easily	guess	the	word	by	himself.	If	nothing	else	helps,	he	can	try	all	the	vowels,
one	after	the	other,	for	the	letter	in	the	middle.

Figures	 are	 not	 only	 the	 object	 of	 geometric	 problems	 but	 also	 an	 important	 help	 for	 all	 sorts	 of
problems	in	which	there	is	nothing	geometric	at	the	outset.	Thus,	we	have	two	good	reasons	to	consider
the	role	of	figures	in	solving	problems.

1.	If	our	problem	is	a	problem	of	geometry,	we	have	to	consider	a	figure.	This	figure	may	be	in	our
imagination,	or	it	may	be	traced	on	paper.	On	certain	occasions,	it	might	be	desirable	to	imagine	the	figure
without	drawing	it;	but	if	we	have	to	examine	various	details,	one	detail	after	the	other,	it	is	desirable	to
draw	a	figure.	 If	 there	are	many	details,	we	cannot	 imagine	all	of	 them	simultaneously,	but	 they	are	all
together	on	the	paper.	A	detail	pictured	in	our	imagination	may	be	forgotten;	but	the	detail	traced	on	paper
remains,	and,	when	we	come	back	 to	 it,	 it	 reminds	us	of	our	previous	remarks,	 it	saves	us	some	of	 the
trouble	we	have	in	recollecting	our	previous	consideration.

2.	We	now	consider	more	specially	the	use	of	figures	in	problems	of	geometric	construction.
We	start	the	detailed	consideration	of	such	a	problem	by	drawing	a	figure	containing	the	unknown	and

the	data,	all	these	elements	being	assembled	as	it	is	prescribed	by	the	condition	of	the	problem.	In	order
to	 understand	 the	 problem	 distinctly,	 we	 have	 to	 consider	 each	 datum	 and	 each	 part	 of	 the	 condition
separately;	then	we	reunite	all	parts	and	consider	the	condition	as	a	whole,	trying	to	see	simultaneously



the	various	connections	required	by	the	problem.	We	would	scarcely	be	able	to	handle	and	separate	and
recombine	all	these	details	without	a	figure	on	paper.

On	the	other	hand,	before	we	have	solved	the	problem	definitively,	it	remains	doubtful	whether	such	a
figure	can	be	drawn	at	all.	Is	it	possible	to	satisfy	the	whole	condition	imposed	by	the	problem?	We	are
not	 entitled	 to	 say	 Yes	 before	 we	 have	 obtained	 the	 definitive	 solution;	 nevertheless	 we	 begin	 with
assuming	 a	 figure	 in	which	 the	 unknown	 is	 connected	with	 the	 data	 as	 prescribed	 by	 the	 condition.	 It
seems	that,	drawing	the	figure,	we	have	made	an	unwarranted	assumption.

No,	 we	 have	 not.	 Not	 necessarily.	 We	 do	 not	 act	 incorrectly	 when,	 examining	 our	 problem,	 we
consider	the	possibility	that	there	is	an	object	that	satisfies	the	condition	imposed	upon	the	unknown	and
has,	with	all	the	data,	the	required	relations,	provided	we	do	not	confuse	mere	possibility	with	certainty.
A	 judge	 does	 not	 act	 incorrectly	when,	 questioning	 the	 defendant,	 he	 considers	 the	 hypothesis	 that	 the
defendant	perpetrated	the	crime	in	question,	provided	he	does	not	commit	himself	to	this	hypothesis.	Both
the	mathematician	and	the	judge	may	examine	a	possibility	without	prejudice,	postponing	their	judgment
till	the	examination	yields	some	definite	result.

The	method	of	 starting	 the	examination	of	a	problem	of	construction	by	drawing	a	 sketch	on	which,
supposedly,	 the	 condition	 is	 satisfied,	 goes	 back	 to	 the	 Greek	 geometers.	 It	 is	 hinted	 by	 the	 short,
somewhat	 enigmatic	 phrase	 of	 Pappus:	 Assume	 what	 is	 required	 to	 be	 done	 as	 already	 done.	 The
following	 recommendation	 is	 somewhat	 less	 terse	 but	 clearer:	 Draw	 a	 hypothetical	 figure	 which
supposes	the	condition	of	the	problem	satisfied	in	all	its	parts.

This	is	a	recommendation	for	problems	of	geometric	construction	but	in	fact	there	is	no	need	to	restrict
us	to	any	such	particular	kind	of	problem.	We	may	extend	the	recommendation	to	all	“problems	to	find”
stating	it	in	the	following	general	form:	Examine	the	hypothetical	situation	in	which	the	condition	of	the
problem	is	supposed	to	be	fully	satisfied.

Compare	PAPPUS,	6.
3.	Let	us	discuss	a	few	points	about	the	actual	drawing	of	figures.
(I)	Shall	we	draw	the	figures	exactly	or	approximately,	with	instruments	or	free-hand?
Both	kinds	of	figures	have	their	advantages.	Exact	figures	have,	in	principle,	the	same	role	in	geometry

as	 exact	 measurements	 in	 physics;	 but,	 in	 practice,	 exact	 figures	 are	 less	 important	 than	 exact
measurements	 because	 the	 theorems	 of	 geometry	 are	much	more	 extensively	 verified	 than	 the	 laws	 of
physics.	The	beginner,	however,	should	construct	many	figures	as	exactly	as	he	can	in	order	to	acquire	a
good	experimental	basis;	and	exact	 figures	may	suggest	geometric	 theorems	also	 to	 the	more	advanced.
Yet,	for	the	purpose	of	reasoning,	carefully	drawn	free-hand	figures	are	usually	good	enough,	and	they	are
much	more	 quickly	 done.	 Of	 course,	 the	 figure	 should	 not	 look	 absurd;	 lines	 supposed	 to	 be	 straight
should	not	be	wavy,	and	so-called	circles	should	not	look	like	potatoes.

An	inaccurate	figure	can	occasionally	suggest	a	false	conclusion,	but	the	danger	is	not	great	and	we	can
protect	ourselves	 from	 it	by	various	means,	 especially	by	varying	 the	 figure.	There	 is	no	danger	 if	we
concentrate	upon	the	logical	connections	and	realize	that	the	figure	is	a	help,	but	by	no	means	the	basis	of
our	conclusions;	the	logical	connections	constitute	the	real	basis.	[This	point	is	instructively	illustrated	by
certain	well	known	paradoxes	which	exploit	cleverly	the	intentional	inaccuracy	of	the	figure.]

(II)	It	is	important	that	the	elements	are	assembled	in	the	required	relations,	it	is	unimportant	in	which
order	 they	 are	 constructed.	Therefore,	 choose	 the	most	 convenient	order.	For	 example,	 to	 illustrate	 the
idea	of	trisection,	you	wish	to	draw	two	angles,	α	and	β,	so	that	α	=	3β.	Starting	from	an	arbitrary	α,	you
cannot	construct	β	with	ruler	and	compasses.	Therefore,	you	choose	a	fairly	small,	but	otherwise	arbitrary
β	and,	starting	from	β,	you	construct	α	which	is	easy.

(III)	Your	figure	should	not	suggest	any	undue	specialization.	The	different	parts	of	 the	figure	should
not	exhibit	apparent	 relations	not	 required	by	 the	problem.	Lines	should	not	seem	to	be	equal,	or	 to	be



perpendicular,	 when	 they	 are	 not	 necessarily	 so.	 Triangles	 should	 not	 seem	 to	 be	 isosceles,	 or	 right-
angled,	when	no	such	property	is	required	by	the	problem.	The	triangle	having	the	angles	45°,	60°,	75°	is
the	one	which,	in	a	precise	sense	of	the	word,	is	the	most	“remote”	both	from	the	isosceles,	and	from	the
right-angled	shape.5	You	draw	this,	or	a	not	very	different	 triangle,	 if	you	wish	 to	consider	a	“general”
triangle.

(IV)	 In	 order	 to	 emphasize	 the	 different	 roles	 of	 different	 lines,	 you	may	 use	 heavy	 and	 light	 lines,
continuous	and	dotted	 lines,	or	 lines	 in	different	colors.	You	draw	a	 line	very	 lightly	 if	you	are	not	yet
quite	decided	 to	use	 it	as	an	auxiliary	 line.	You	may	draw	the	given	elements	with	 red	pencil,	and	use
other	colors	to	emphasize	important	parts,	as	a	pair	of	similar	triangles,	etc.

(V)	In	order	to	illustrate	solid	geometry,	shall	we	use	three-dimensional	models,	or	drawings	on	paper
and	blackboard?

Three-dimensional	models	are	desirable,	but	troublesome	to	make	and	expensive	to	buy.	Thus,	usually,
we	 must	 be	 satisfied	 with	 drawings	 although	 it	 is	 not	 easy	 to	 make	 them	 impressive.	 Some
experimentation	with	 self-made	 cardboard	models	 is	 very	desirable	 for	 beginners.	 It	 is	 helpful	 to	 take
objects	of	our	everyday	surroundings	as	representations	of	geometric	notions.	Thus,	a	box,	a	tile,	or	the
classroom	may	 represent	 a	 rectangular	 parallelepiped,	 a	 pencil,	 a	 circular	 cylinder,	 a	 lampshade,	 the
frustum	of	a	right	circular	cone,	etc.

4.	Figures	traced	on	paper	are	easy	to	produce,	easy	to	recognize,	easy	to	remember.	Plane	figures	are
especially	familiar	to	us,	problems	about	plane	figures	especially	accessible.	We	may	take	advantage	of
this	circumstance,	we	may	use	our	aptitude	for	handling	figures	in	handling	nongeometrical	objects	if	we
contrive	to	find	a	suitable	geometrical	representation	for	those	nongeometrical	objects.

In	fact,	geometrical	representations,	graphs	and	diagrams	of	all	sorts,	are	used	in	all	sciences,	not	only
in	physics,	chemistry,	and	the	natural	sciences,	but	also	in	economics,	and	even	in	psychology.	Using	some
suitable	geometrical	representation,	we	try	to	express	everything	in	the	language	of	figures,	to	reduce	all
sorts	of	problems	to	problems	of	geometry.

Thus,	even	if	your	problem	is	not	a	problem	of	geometry,	you	may	try	to	draw	a	figure.	To	find	a	lucid
geometric	representation	for	your	nongeometrical	problem	could	be	an	important	step	toward	the	solution.

Generalization	is	passing	from	the	consideration	of	one	object	to	the	consideration	of	a	set	containing
that	 object;	 or	 passing	 from	 the	 consideration	 of	 a	 restricted	 set	 to	 that	 of	 a	more	 comprehensive	 set
containing	the	restricted	one.

1.	If,	by	some	chance,	we	come	across	the	sum

1	+	8	+	27	+	64	=	100

we	may	observe	that	it	can	be	expressed	in	the	curious	form

13	+	23	+	33	+	43	=	102.

Now,	it	is	natural	to	ask	ourselves:	Does	it	often	happen	that	a	sum	of	successive	cubes	as

13	+	23	+	33	+	·	·	·	+	n3

is	 a	 square?	 In	 asking	 this,	 we	 generalize.	 This	 generalization	 is	 a	 lucky	 one;	 it	 leads	 from	 one
observation	 to	 a	 remarkable	 general	 law.	 Many	 results	 were	 found	 by	 lucky	 generalizations	 in
mathematics,	physics,	and	the	natural	sciences.	See	INDUCTION	AND	MATHEMATICAL	INDUCTION.

2.	Generalization	may	be	useful	in	the	solution	of	problems.	Consider	the	following	problem	of	solid
geometry:	“A	straight	line	and	a	regular	octahedron	are	given	in	position.	Find	a	plane	that	passes	through



the	given	 line	and	bisects	 the	volume	of	 the	given	octahedron.”	This	problem	may	look	difficult	but,	 in
fact,	very	little	familiarity	with	the	shape	of	the	regular	octahedron	is	sufficient	to	suggest	the	following
more	general	problem:	“A	straight	line	and	a	solid	with	a	center	of	symmetry	are	given	in	position.	Find
a	plane	that	passes	through	the	given	line	and	bisects	the	volume	of	the	given	solid.”	The	plane	required
passes,	 of	 course,	 through	 the	 center	 of	 symmetry	of	 the	 solid,	 and	 is	 determined	by	 this	 point	 and	 the
given	line.	As	the	octahedron	has	a	center	of	symmetry,	our	original	problem	is	also	solved.

The	 reader	 will	 not	 fail	 to	 observe	 that	 the	 second	 problem	 is	 more	 general	 than	 the	 first,	 and,
nevertheless,	much	easier	than	the	first.	In	fact,	our	main	achievement	in	solving	the	first	problem	was	to
invent	 the	 second	 problem.	 Inventing	 the	 second	 problem,	 we	 recognize	 the	 role	 of	 the	 center	 of
symmetry;	we	disentangled	 that	property	of	 the	octahedron	which	 is	essential	 for	 the	problem	at	hand,
namely	that	it	has	such	a	center.

The	more	general	problem	may	be	easier	 to	 solve.	This	 sounds	paradoxical	but,	 after	 the	 foregoing
example,	it	should	not	be	paradoxical	to	us.	The	main	achievement	in	solving	the	special	problem	was	to
invent	the	general	problem.	After	the	main	achievement,	only	a	minor	part	of	the	work	remains.	Thus,	in
our	case,	the	solution	of	the	general	problem	is	only	a	minor	part	of	the	solution	of	the	special	problem.

See	INVENTOR’S	PARADOX.
3.	“Find	the	volume	of	the	frustum	of	a	pyramid	with	square	base,	being	given	that	the	side	of	the	lower

base	is	10	in.,	the	side	of	the	upper	base	5	in.,	and	the	altitude	of	the	frustum	6	in.”	If	for	the	numbers	10,
5,	6	we	substitute	letters,	for	instance	a,	b,	h,	we	generalize.	We	obtain	a	more	general	problem	than	the
original	one,	namely	the	following:	“Find	the	volume	of	the	frustum	of	a	pyramid	with	square	base,	being
given	that	the	side	of	the	lower	base	is	a,	the	side	of	the	upper	base	b,	and	the	altitude	of	the	frustum	h.”
Such	generalization	may	be	very	useful.	Passing	from	a	problem	“in	numbers”	to	another	one	“in	letters”
we	gain	 access	 to	 new	procedures;	we	 can	 vary	 the	 data,	 and,	 doing	 so,	we	may	 check	 our	 results	 in
various	ways.	See	CAN	YOU	CHECK	THE	RESULT?	2,	VARIATION	OF	THE	PROBLEM,	4.

Have	you	seen	it	before?	It	is	possible	that	we	have	solved	before	the	same	problem	that	we	have	to
do	now,	or	that	we	have	heard	of	it,	or	that	we	had	a	very	similar	problem.	These	are	possibilities	which
we	should	not	fail	to	explore.	We	try	to	remember	what	happened.	Have	you	seen	it	before?	Or	have	you
seen	the	same	problem	in	a	slightly	different	form?	Even	if	the	answer	is	negative	such	questions	may
start	the	mobilization	of	useful	knowledge.

The	 question	 in	 the	 title	 of	 the	 present	 article	 is	 often	 used	 in	 a	more	 general	meaning.	 In	 order	 to
obtain	 the	 solution,	 we	 have	 to	 extract	 relevant	 elements	 from	 our	 memory,	 we	 have	 to	 mobilize	 the
pertinent	parts	of	our	dormant	knowledge	(PROGRESS	AND	ACHIEVEMENT).	We	cannot	know,	of	course,	in
advance	 which	 parts	 of	 our	 knowledge	may	 be	 relevant;	 but	 there	 are	 certain	 possibilities	 which	 we
should	not	fail	 to	explore.	Thus,	any	feature	of	the	present	problem	that	played	a	role	in	the	solution	of
some	other	problem	may	play	again	a	role.	Therefore,	if	any	feature	of	the	present	problem	strikes	us	as
possibly	important,	we	try	to	recognize	it.	What	is	it?	Is	it	familiar	to	you?	Have	you	seen	it	before?

Here	is	a	problem	related	to	yours	and	solved	before.	This	is	good	news;	a	problem	for	which	the
solution	is	known	and	which	is	connected	with	our	present	problem,	is	certainly	welcome.	It	is	still	more
welcome	if	the	connection	is	close	and	the	solution	simple.	There	is	a	good	chance	that	such	a	problem
will	be	useful	in	solving	our	present	one.

The	 situation	 that	we	 are	 discussing	 here	 is	 typical	 and	 important.	 In	 order	 to	 see	 it	 clearly	 let	 us
compare	it	with	the	situation	in	which	we	find	ourselves	when	we	are	working	at	an	auxiliary	problem.	In
both	cases,	our	aim	is	to	solve	a	certain	problem	A	and	we	introduce	and	consider	another	problem	B	in
the	 hope	 that	 we	 may	 derive	 some	 profit	 for	 the	 solution	 of	 the	 proposed	 problem	 A	 from	 the
consideration	 of	 that	 other	 problem	B.	 The	 difference	 is	 in	 our	 relation	 to	B.	 Here,	 we	 succeeded	 in



recollecting	 an	old	problem	B	 of	which	we	 know	 the	 solution	 but	we	 do	 not	 know	yet	 how	 to	 use	 it.
There,	we	succeeded	in	inventing	a	new	problem	B;	we	know	(or	at	least	we	suspect	strongly)	how	to	use
B,	but	we	do	not	know	yet	how	to	solve	it.	Our	difficulty	concerning	B	makes	all	the	difference	between
the	two	situations.	When	this	difficulty	is	overcome,	we	may	use	B	in	the	same	way	in	both	cases;	we	may
use	the	result	or	 the	method	(as	explained	in	AUXILIARY	PROBLEM,	3),	and,	 if	we	are	 lucky,	we	may	use
both	the	result	and	the	method.	In	the	situation	considered	here,	we	know	well	the	solution	of	B	but	we	do
not	know	yet	how	to	use	it.	Therefore,	we	ask:	Could	you	use	it?	Could	you	use	its	result?	Could	you
use	its	method?

The	 intention	 of	 using	 a	 certain	 formerly	 solved	 problem	 influences	 our	 conception	 of	 the	 present
problem.	Trying	 to	 link	up	 the	 two	problems,	 the	new	and	 the	old,	we	 introduce	 into	 the	new	problem
elements	corresponding	to	certain	important	elements	of	the	old	problem.	For	example,	our	problem	is	to
determine	the	sphere	circumscribed	about	a	given	tetrahedron.	This	is	a	problem	of	solid	geometry.	We
may	remember	that	we	have	solved	before	the	analogous	problem	of	plane	geometry	of	constructing	the
circle	circumscribed	about	a	given	triangle.	Then	we	recollect	that	in	the	old	problem	of	plane	geometry,
we	 used	 the	 perpendicular	 bisectors	 of	 the	 sides	 of	 the	 triangle.	 It	 is	 reasonable	 to	 try	 to	 introduce
something	analogous	into	our	present	problem.	Thus	we	may	be	led	to	introduce	into	our	present	problem,
as	corresponding	auxiliary	elements,	 the	perpendicular	bisecting	planes	of	 the	edges	of	 the	 tetrahedron.
After	 this	 idea,	 we	 can	 easily	 work	 out	 the	 solution	 to	 the	 problem	 of	 solid	 geometry,	 following	 the
analogous	solution	in	plane	geometry.

The	foregoing	example	is	typical.	The	consideration	of	a	formerly	solved	related	problem	leads	us	to
the	 introduction	 of	 auxiliary	 elements,	 and	 the	 introduction	 of	 suitable	 auxiliary	 elements	 makes	 it
possible	 for	us	 to	use	 the	 related	problem	 to	 full	advantage	 in	solving	our	present	problem.	We	aim	at
such	an	effect	when,	thinking	about	the	possible	use	of	a	formerly	solved	related	problem,	we	ask:	Should
you	introduce	some	auxiliary	element	in	order	to	make	its	use	possible?
Here	is	a	theorem	related	to	yours	and	proved	before.	This	version	of	the	remark	discussed	here	is

exemplified	in	section	19.

Heuristic,	or	heuretic,	or	“ars	inveniendi”	was	the	name	of	a	certain	branch	of	study,	not	very	clearly
circumscribed,	belonging	to	logic,	or	to	philosophy,	or	to	psychology,	often	outlined,	seldom	presented	in
detail,	and	as	good	as	forgotten	today.	The	aim	of	heuristic	is	to	study	the	methods	and	rules	of	discovery
and	 invention.	 A	 few	 traces	 of	 such	 study	may	 be	 found	 in	 the	 commentators	 of	 Euclid;	 a	 passage	 of
PAPPUS	 is	 particularly	 interesting	 in	 this	 respect.	 The	 most	 famous	 attempts	 to	 build	 up	 a	 system	 of
heuristic	 are	 due	 to	 DESCARTES	 and	 to	 LEIBNITZ,	 both	 great	 mathematicians	 and	 philosophers.	 Bernard
BOLZANO	presented	a	notable	detailed	account	of	heuristic.	The	present	booklet	 is	 an	attempt	 to	 revive
heuristic	in	a	modern	and	modest	form.	See	MODERN	HEURISTIC.

Heuristic,	as	an	adjective,	means	“serving	to	discover.”

Heuristic	reasoning	is	reasoning	not	regarded	as	final	and	strict	but	as	provisional	and	plausible	only,
whose	purpose	is	to	discover	the	solution	of	the	present	problem.	We	are	often	obliged	to	use	heuristic
reasoning.	We	 shall	 attain	 complete	 certainty	when	we	 shall	 have	 obtained	 the	 complete	 solution,	 but
before	obtaining	certainty	we	must	often	be	satisfied	with	a	more	or	less	plausible	guess.	We	may	need
the	provisional	before	we	attain	the	final.	We	need	heuristic	reasoning	when	we	construct	a	strict	proof	as
we	need	scaffolding	when	we	erect	a	building.
See	SIGNS	OF	PROGRESS.	Heuristic	reasoning	is	often	based	on	induction,	or	on	analogy;	see	INDUCTION

AND	MATHEMATICAL	INDUCTION,	and	ANALOGY,	8,	9,	10.6
Heuristic	reasoning	is	good	in	itself.	What	is	bad	is	to	mix	up	heuristic	reasoning	with	rigorous	proof.

What	is	worse	is	to	sell	heuristic	reasoning	for	rigorous	proof.



The	teaching	of	certain	subjects,	especially	the	teaching	of	calculus	to	engineers	and	physicists,	could
be	essentially	 improved	 if	 the	nature	of	heuristic	reasoning	were	better	understood,	both	 its	advantages
and	 its	 limitations	openly	recognized,	and	 if	 the	 textbooks	would	present	heuristic	arguments	openly.	A
heuristic	 argument	 presented	 with	 taste	 and	 frankness	 may	 be	 useful;	 it	 may	 prepare	 for	 the	 rigorous
argument	of	which	it	usually	contains	certain	germs.	But	a	heuristic	argument	is	likely	to	be	harmful	if	it	is
presented	ambiguously	with	visible	hesitation	between	shame	and	pretension.	See	WHY	PROOFS?

If	you	cannot	solve	the	proposed	problem	do	not	let	this	failure	afflict	you	too	much	but	try	to	find
consolation	with	some	easier	success,	try	to	solve	first	some	related	problem;	then	you	may	find	courage
to	attack	your	original	problem	again.	Do	not	 forget	 that	human	superiority	consists	 in	going	around	an
obstacle	that	cannot	be	overcome	directly,	in	devising	some	suitable	auxiliary	problem	when	the	original
one	appears	insoluble.
Could	you	imagine	a	more	accessible	related	problem?	You	should	now	invent	a	related	problem,	not

merely	remember	one;	I	hope	that	you	have	tried	already	the	question:	Do	you	know	a	related	problem?
The	remaining	questions	 in	 that	paragraph	of	 the	 list	which	starts	with	 the	 title	of	 the	present	article

have	 a	 common	 aim,	 the	 VARIATION	 OF	 THE	 PROBLEM.	 There	 are	 different	 means	 to	 attain	 this	 aim	 as
GENERALIZATION,	 SPECIALIZATION,	 ANALOGY,	 and	 others	 which	 are	 various	 ways	 of	 DECOMPOSING	 AND
RECOMBINING.

Induction	and	mathematical	 induction.	 Induction	 is	 the	process	of	discovering	general	 laws	by	 the
observation	 and	 combination	 of	 particular	 instances.	 It	 is	 used	 in	 all	 sciences,	 even	 in	 mathematics.
Mathematical	 induction	 is	 used	 in	mathematics	 alone	 to	 prove	 theorems	 of	 a	 certain	 kind.	 It	 is	 rather
unfortunate	that	the	names	are	connected	because	there	is	very	little	logical	connection	between	the	two
processes.	 There	 is,	 however,	 some	 practical	 connection;	we	 often	 use	 both	methods	 together.	We	 are
going	to	illustrate	both	methods	by	the	same	example.

1.	We	may	observe,	by	chance,	that

1	+	8	+	27	+	64	=	100

and,	recognizing	the	cubes	and	the	square,	we	may	give	to	the	fact	we	observed	the	more	interesting	form:

13	+	23	+	33	+	43	=	102.

How	does	such	a	thing	happen?	Does	it	often	happen	that	such	a	sum	of	successive	cubes	is	a	square?
In	 asking	 this	we	 are	 like	 the	 naturalist	who,	 impressed	 by	 a	 curious	 plant	 or	 a	 curious	 geological

formation,	conceives	a	general	question.	Our	general	question	 is	concerned	with	 the	sum	of	successive
cubes

13	+	23	+	33	+	·	·	·	+	n3.

We	were	led	to	it	by	the	“particular	instance”	n	=	4.
What	 can	we	 do	 for	 our	 question?	What	 the	 naturalist	 would	 do;	 we	 can	 investigate	 other	 special

cases.	The	special	cases	n	=	2,	3	are	still	simpler,	the	case	n	=	5	is	the	next	one.	Let	us	add,	for	the	sake
of	uniformity	and	completeness,	 the	case	n	=	1.	Arranging	neatly	all	 these	cases,	 as	 a	geologist	would
arrange	his	specimens	of	a	certain	ore,	we	obtain	the	following	table:



It	 is	hard	 to	believe	 that	 all	 these	 sums	of	consecutive	cubes	are	 squares	by	mere	chance.	 In	a	 similar
case,	the	naturalist	would	have	little	doubt	that	the	general	law	suggested	by	the	special	cases	heretofore
observed	is	correct;	the	general	law	is	almost	proved	by	induction.	The	mathematician	expresses	himself
with	more	reserve	although	fundamentally,	of	course,	he	thinks	in	the	same	fashion.	He	would	say	that	the
following	theorem	is	strongly	suggested	by	induction:

The	sum	of	the	first	n	cubes	is	a	square.

2.	We	have	been	led	to	conjecture	a	remarkable,	somewhat	mysterious	law.	Why	should	those	sums	of
successive	cubes	be	squares?	But,	apparently,	they	are	squares.

What	would	 the	 naturalist	 do	 in	 such	 a	 situation?	He	would	 go	 on	 examining	 his	 conjecture.	 In	 so
doing,	he	may	follow	various	lines	of	investigation.	The	naturalist	may	accumulate	further	experimental
evidence;	if	we	wish	to	do	the	same,	we	have	to	test	the	next	cases,	n	=	6,	7,	.	.	.	.	The	naturalist	may	also
reexamine	the	facts	whose	observation	has	led	him	to	his	conjecture;	he	compares	them	carefully,	he	tries
to	disentangle	some	deeper	regularity,	some	further	analogy.	Let	us	follow	this	line	of	investigation.

Let	us	reexamine	the	cases	n	=	1,	2,	3,	4,	5	which	we	arranged	in	our	table.	Why	are	all	these	sums
squares?	What	can	we	say	about	these	squares?	Their	bases	are	1,	3,	6,	10,	15.	What	about	these	bases?
Is	 there	 some	 deeper	 regularity,	 some	 further	 analogy?	 At	 any	 rate,	 they	 do	 not	 seem	 to	 increase	 too
irregularly.	How	do	they	increase?	The	difference	between	two	successive	terms	of	this	sequence	is	itself
increasing,

3	−	1	=	2,			6	−	3	=	3,			10	−	6	=	4,			15	−	10	=	5.

Now	 these	 differences	 are	 conspicuously	 regular.	We	may	 see	 here	 a	 surprising	 analogy	 between	 the
bases	of	those	squares,	we	may	see	a	remarkable	regularity	in	the	numbers	1,	3,	6,	10,	15:

If	this	regularity	is	general	(and	the	contrary	is	hard	to	believe)	the	theorem	we	suspected	takes	a	more
precise	form:
It	is,	for	n	=	1,	2,	3,	.	.	.

13	+	23	+	33	+	·	·	·	+	n3	=	(1	+	2	+	3	+	·	·	·	+	n)2.

3.	The	law	we	just	stated	was	found	by	induction,	and	the	manner	in	which	it	was	found	conveys	to	us
an	idea	about	induction	which	is	necessarily	one-sided	and	imperfect	but	not	distorted.	Induction	tries	to



find	 regularity	 and	 coherence	 behind	 the	 observations.	 Its	 most	 conspicuous	 instruments	 are
generalization,	 specialization,	 analogy.	 Tentative	 generalization	 starts	 from	 an	 effort	 to	 understand	 the
observed	facts;	it	is	based	on	analogy,	and	tested	by	further	special	cases.

We	refrain	 from	further	 remarks	on	 the	subject	of	 induction	about	which	 there	 is	wide	disagreement
among	philosophers.	But	it	should	be	added	that	many	mathematical	results	were	found	by	induction	first
and	proved	later.	Mathematics	presented	with	rigor	is	a	systematic	deductive	science	but	mathematics	in
the	making	is	an	experimental	inductive	science.

4.	 In	 mathematics	 as	 in	 the	 physical	 sciences	 we	 may	 use	 observation	 and	 induction	 to	 discover
general	 laws.	 But	 there	 is	 a	 difference.	 In	 the	 physical	 sciences,	 there	 is	 no	 higher	 authority	 than
observation	and	induction	but	in	mathematics	there	is	such	an	authority:	rigorous	proof.

After	having	worked	a	while	experimentally	 it	may	be	good	 to	change	our	point	of	view.	Let	us	be
strict.	We	 have	 discovered	 an	 interesting	 result	 but	 the	 reasoning	 that	 led	 to	 it	 was	merely	 plausible,
experimental,	provisional,	heuristic;	let	us	try	to	establish	it	definitively	by	a	rigorous	proof.

We	have	arrived	now	at	a	“problem	to	prove”:	to	prove	or	to	disprove	the	result	stated	before	(see	2,
above).

There	is	a	minor	simplification.	We	may	know	that

At	any	rate,	this	is	easy	to	verify.	Take	a	rectangle	with	sides	n	and	n	+	1,	and	divide	it	in	two	halves
by	a	zigzag	line	as	in	Fig.	15a	which	shows	the	case	n	=	4.	Each	of	the	halves	is	“staircase-shaped”	and
its	area	has	the	expression	1	+	2	+	·	·	·	+	n;	for	n	=	4	it	is	1	+	2	+	3	+	4,	see	Fig.	18b.	Now,	the	whole
area	of	the	rectangle	is	n(n	+	1)	of	which	the	staircase-shaped	area	is	one	half;	this	proves	the	formula.

FIG.	18

We	may	transform	the	result	which	we	found	by	induction	into

5.	If	we	have	no	idea	how	to	prove	this	result,	we	may	at	least	test	it.	Let	us	test	the	first	case	we	have
not	tested	yet,	the	case	n	=	6.	For	this	value,	the	formula	yields



and,	on	computation,	this	turns	out	to	be	true,	both	sides	being	equal	to	441.
We	can	test	the	formula	more	effectively.	The	formula	is,	very	likely,	generally	true,	true	for	all	values

of	n.	Does	it	remain	true	when	we	pass	from	any	value	n	to	the	next	value	n	+	1?	Along	with	the	formula
as	written	above	(p.	118)	we	should	also	have

Now,	there	is	a	simple	check.	Subtracting	from	this	the	formula	written	above,	we	obtain

This	is,	however,	easy	to	check.	The	right	hand	side	may	be	written	as

Our	experimentally	found	formula	passed	a	vital	test.
Let	us	see	clearly	what	this	test	means.	We	verified	beyond	doubt	that

We	do	not	know	yet	whether

is	true.	But	if	we	knew	that	this	was	true	we	could	infer,	by	adding	the	equation	which	we	verified	beyond
doubt,	that

is	also	 true	 which	 is	 the	 same	 assertion	 for	 the	 next	 integer	 n	 +	 1.	 Now,	 we	 actually	 know	 that	 our
conjecture	is	true	for	n	=	1,	2,	3,	4,	5,	6.	By	virtue	of	what	we	have	just	said,	the	conjecture,	being	true	for
n	=	6,	must	also	be	true	for	n	=	7;	being	true	for	n	=	7	it	is	true	for	n	=	8;	being	true	for	n	=	8	it	is	true	for
n	=	9;	and	so	on.	It	holds	for	all	n,	it	is	proved	to	be	true	generally.

6.	The	foregoing	proof	may	serve	as	a	pattern	in	many	similar	cases.	What	are	the	essential	 lines	of
this	pattern?



The	assertion	we	have	to	prove	must	be	given	in	advance,	in	precise	form.
The	assertion	must	depend	on	an	integer	n.
The	 assertion	must	 be	 sufficiently	 “explicit”	 so	 that	we	 have	 some	 possibility	 of	 testing	whether	 it

remains	true	in	the	passage	from	n	to	the	next	integer	n	+	1.
If	we	succeed	in	testing	this	effectively,	we	may	be	able	to	use	our	experience,	gained	in	the	process	of

testing,	to	conclude	that	the	assertion	must	be	true	for	n	+	1	provided	it	is	true	for	n.	When	we	are	so	far	it
is	sufficient	to	know	that	the	assertion	is	true	for	n	=	1;	hence	it	follows	for	n	=	2;	hence	it	follows	for	n	=
3.	and	so	on;	passing	from	any	integer	to	the	next,	we	prove	the	assertion	generally.

This	process	is	so	often	used	that	it	deserves	a	name.	We	could	call	it	“proof	from	n	to	n	+	1”	or	still
simpler	 “passage	 to	 the	 next	 integer.”	 Unfortunately,	 the	 accepted	 technical	 term	 is	 “mathematical
induction.”	This	name	results	from	a	random	circumstance.	The	precise	assertion	that	we	have	to	prove
may	come	from	any	source,	and	it	is	immaterial	from	the	logical	viewpoint	what	the	source	is.	Now,	in
many	 cases,	 as	 in	 the	 case	we	 discussed	 here	 in	 detail,	 the	 source	 is	 induction,	 the	 assertion	 is	 found
experimentally,	 and	 so	 the	 proof	 appears	 as	 a	mathematical	 complement	 to	 induction;	 this	 explains	 the
name.

7.	Here	 is	 another	 point,	 somewhat	 subtle,	 but	 important	 to	 anybody	who	 desires	 to	 find	 proofs	 by
himself.	 In	 the	 foregoing,	we	found	 two	different	assertions	by	observation	and	 induction,	one	after	 the
other,	the	first	under	1,	the	second	under	2;	the	second	was	more	precise	than	the	first.	Dealing	with	the
second	assertion,	we	found	a	possibility	of	checking	the	passage	from	n	to	n	+	1,	and	so	we	were	able	to
find	 a	 proof	 by	 “mathematical	 induction.”	 Dealing	 with	 the	 first	 assertion,	 and	 ignoring	 the	 precision
added	to	it	by	the	second	one,	we	should	scarcely	have	been	able	to	find	such	a	proof.	In	fact,	 the	first
assertion	is	less	precise,	less	“explicit,”	less	“tangible,”	less	accessible	to	testing	and	checking	than	the
second	one.	Passing	from	the	first	to	the	second,	from	the	less	precise	to	the	more	precise	statement,	was
an	important	preparative	for	the	final	proof.

This	circumstance	has	a	paradoxical	aspect.	The	second	assertion	is	stronger;	it	implies	immediately
the	first,	whereas	the	somewhat	“hazy”	first	assertion	can	hardly	imply	the	more	“clear-cut”	second	one.
Thus,	the	stronger	theorem	is	easier	to	master	than	the	weaker	one;	this	is	the	INVENTOR’S	PARADOX.

Inventor’s	paradox.	The	more	ambitious	plan	may	have	more	chances	of	success.
This	sounds	paradoxical.	Yet,	when	passing	from	one	problem	to	another,	we	may	often	observe	that

the	new,	more	ambitious	problem	is	easier	to	handle	than	the	original	problem.	More	questions	may	be
easier	 to	 answer	 than	 just	one	question.	The	more	comprehensive	 theorem	may	be	easier	 to	prove,	 the
more	general	problem	may	be	easier	to	solve.

The	 paradox	 disappears	 if	 we	 look	 closer	 at	 a	 few	 examples	 (GENERALIZATION,	 2;	 INDUCTION	 AND
MATHEMATICAL	INDUCTION,	7).	The	more	ambitious	plan	may	have	more	chances	of	success	provided	it	is
not	based	on	mere	pretension	but	on	some	vision	of	the	things	beyond	those	immediately	present.

Is	it	possible	to	satisfy	the	condition?	Is	the	condition	sufficient	to	determine	the	unknown?	Or	is	it
insufficient?	Or	redundant?	Or	contradictory?

These	 questions	 are	 often	 useful	 at	 an	 early	 stage	when	 they	 do	 not	 need	 a	 final	 answer	 but	 just	 a
provisional	answer,	a	guess.	For	examples,	see	sections	8,	18.

It	is	good	to	foresee	any	feature	of	the	result	for	which	we	work.	When	we	have	some	idea	of	what	we
can	expect,	we	know	better	in	which	direction	we	should	go.	Now,	an	important	feature	of	a	problem	is
the	number	of	solutions	of	which	it	admits.	Most	interesting	among	problems	are	those	which	admit	of	just
one	 solution;	 we	 are	 inclined	 to	 consider	 problems	 with	 a	 uniquely	 determined	 solution	 as	 the	 only
“reasonable”	problems.	Is	our	problem,	in	this	sense,	“reasonable”?	If	we	can	answer	this	question,	even
by	a	plausible	guess,	our	interest	in	the	problem	increases	and	we	can	work	better.



Is	our	problem	“reasonable”?	This	question	is	useful	at	an	early	stage	of	our	work	if	we	can	answer	it
easily.	 If	 the	answer	 is	difficult	 to	obtain,	 the	 trouble	we	have	 in	obtaining	 it	may	outweigh	 the	gain	 in
interest.	 The	 same	 is	 true	 of	 the	 question	 “Is	 it	 possible	 to	 satisfy	 the	 condition?”	 and	 the	 allied
questions	of	our	list.	We	should	put	them	because	the	answer	might	be	easy	and	plausible,	but	we	should
not	insist	on	them	when	the	answer	seems	to	be	difficult	or	obscure.

The	corresponding	questions	for	“problems	to	prove”	are:	Is	it	likely	that	the	proposition	is	true?	Or
is	it	more	likely	that	it	is	false?	The	way	the	question	is	put	shows	clearly	that	only	a	guess,	a	plausible
provisional	answer,	is	expected.

Leibnitz,	Gottfried	Wilhelm	(1646-1716),	great	mathematician	and	philosopher,	planned	to	write	an
“Art	 of	 Invention”	 but	 he	 never	 carried	 through	 his	 plan.	Numerous	 fragments	 dispersed	 in	 his	works
show,	 however,	 that	 he	 entertained	 interesting	 ideas	 about	 the	 subject	 whose	 importance	 he	 often
emphasized.	Thus,	he	wrote:	“Nothing	is	more	important	than	to	see	the	sources	of	invention	which	are,	in
my	opinion,	more	interesting	than	the	inventions	themselves.”

Lemma	means	“auxiliary	theorem.”	The	word	is	of	Greek	origin;	a	more	literal	translation	would	be
“what	is	assumed.”

We	are	trying	to	prove	a	theorem,	say,	A.	We	are	led	to	suspect	another	theorem,	say,	B;	if	B	were	true
we	could	perhaps,	using	it,	prove	A.	We	assume	B	provisionally,	postponing	its	proof,	and	go	ahead	with
the	 proof	 of	A.	 Such	 a	 theorem	B	 is	 assumed,	 and	 is	 an	 auxiliary	 theorem	 to	 the	 originally	 proposed
theorem	A.	Our	little	story	is	fairly	typical	and	explains	the	present	meaning	of	the	word	“lemma.”

Look	at	the	unknown.	This	is	old	advice;	the	corresponding	Latin	saying	is:	“respice	finem.”	That	is,
look	at	the	end.	Remember	your	aim.	Do	not	forget	your	goal.	Think	of	what	you	are	desiring	to	obtain.	Do
not	lose	sight	of	what	is	required.	Keep	in	mind	what	you	are	working	for.	Look	at	the	unknown.	Look	at
the	 conclusion.	 The	 last	 two	 versions	 of	 “respice	 finem”	 are	 specifically	 adapted	 to	 mathematical
problems,	to	“problems	to	find”	and	to	“problems	to	prove”	respectively.

Focusing	our	attention	on	our	aim	and	concentrating	our	will	on	our	purpose,	we	 think	of	ways	and
means	to	attain	it.	What	are	the	means	to	this	end?	How	can	you	attain	your	aim?	How	can	you	obtain	a
result	 of	 this	 kind?	 What	 causes	 could	 produce	 such	 a	 result?	 Where	 have	 you	 seen	 such	 a	 result
produced?	What	do	people	usually	do	 to	obtain	 such	a	 result?	And	 try	 to	 think	of	 a	 familiar	problem
having	 the	same	or	a	similar	unknown.	And	 try	 to	 think	of	a	 familiar	 theorem	having	 the	same	or	a
similar	conclusion.	Again,	 the	 last	 two	versions	are	 specifically	adapted	 to	“problems	 to	 find”	 and	 to
“problems	to	prove”	respectively.

1.	We	are	 going	 to	 consider	mathematical	 problems,	“problems	 to	 find,”	 and	 the	 suggestion:	Try	 to
think	of	a	familiar	problem	having	the	same	unknown.	Let	us	compare	this	suggestion	with	that	involved
in	the	question:	Do	you	know	a	related	problem?

The	latter	suggestion	is	more	general	than	the	former	one.	If	a	problem	is	related	to	another	problem,
the	 two	have	something	 in	common;	 they	may	 involve	a	 few	common	objects	or	notions,	or	have	some
data	 in	 common,	 or	 some	 part	 of	 the	 condition,	 and	 so	 on.	Our	 first	 suggestion	 insists	 on	 a	 particular
common	point:	The	two	problems	should	have	the	same	unknown.	That	is,	the	unknown	should	be	in	both
cases	an	object	of	the	same	category,	for	instance,	in	both	cases	the	length	of	a	straight	line.

In	comparison	with	the	general	suggestion,	there	is	a	certain	economy	in	the	special	suggestion.
First,	we	may	 save	 some	effort	 in	 representing	 the	problem;	we	must	not	 look	at	once	at	 the	whole

problem	but	just	at	the	unknown.	The	problem	appears	to	us	schematically,	as

“Given	.	.	.	.	.	.	.	.	.	.	find	the	length	of	the	line.”



Second,	 there	is	a	certain	economy	of	choice.	Many,	many	problems	may	be	related	to	the	proposed
problem,	 having	 some	 point	 or	 other	 in	 common	with	 it.	 But,	 looking	 at	 the	 unknown,	we	 restrict	 our
choice;	we	take	into	consideration	only	such	problems	as	have	the	same	unknown.	And,	of	course,	among
the	problems	having	 the	same	unknown,	we	consider	 first	 those	which	are	 the	most	elementary	and	 the
most	familiar	to	us.

2.	The	problem	before	us	has	the	form:

“Given	.	.	.	.	.	.	.	.	.	.	find	the	length	of	the	line.”

Now	the	simplest	and	most	familiar	problems	of	 this	kind	are	concerned	with	triangles:	Given	three
constituent	parts	of	a	triangle	find	the	length	of	a	side.	Remembering	this,	we	have	found	something	that
may	be	relevant:	Here	is	a	problem	related	to	yours	and	solved	before.	Could	you	use	it?	Could	you	use
its	result?	 In	order	 to	use	 the	 familiar	 results	about	 triangles,	we	must	have	a	 triangle	 in	our	 figure.	 Is
there	a	 triangle?	Or	should	we	introduce	one	in	order	 to	profit	from	those	familiar	results?	Should	you
introduce	some	auxiliary	element	in	order	to	make	their	use	possible?

There	are	several	simple	problems	whose	unknown	is	 the	side	of	a	 triangle.	 (They	differ	 from	each
other	in	the	data;	two	angles	may	be	given	and	one	side,	or	two	sides	and	one	angle,	and	the	position	of
the	angle	with	respect	to	the	given	sides	may	be	different.	Then,	all	these	problems	are	particularly	simple
for	right	triangles.)	With	our	attention	riveted	upon	the	problem	before	us,	we	try	to	find	out	which	kind	of
triangle	we	should	introduce,	which	formerly	solved	problem	(with	the	same	unknown	as	that	before	us)
we	could	most	conveniently	adapt	to	our	present	purpose.

Having	introduced	a	suitable	auxiliary	triangle,	it	may	happen	that	we	do	not	know	yet	three	constituent
parts	of	it.	This,	however,	is	not	absolutely	necessary;	if	we	foresee	that	the	missing	parts	can	be	obtained
somehow	we	have	made	essential	progress,	we	have	a	plan	of	the	solution.

3.	The	procedure	sketched	in	the	foregoing	(under	1	and	2)	is	illustrated,	essentially,	by	section	10	(the
illustration	is	somewhat	obscured	by	the	slowness	of	 the	students).	 It	 is	not	difficult	at	all	 to	add	many
similar	examples.	In	fact,	the	solution	of	almost	all	“problems	to	find”	usually	proposed	in	less	advanced
classes	can	be	started	by	proper	use	of	the	suggestion:	And	try	to	think	of	a	familiar	problem	having	the
same	or	a	similar	unknown.

We	must	take	such	problems	schematically,	and	look	at	the	unknown	first:

(1)	Given	.	.	.	.	.	.	.	find	the	length	of	the	line.
(2)	Given	.	.	.	.	.	.	.	find	the	angle.
(3)	Given	.	.	.	.	.	.	.	find	the	volume	of	the	tetrahedron.
(4)	Given	.	.	.	.	.	.	.	construct	the	point.

If	we	have	some	experience	in	dealing	with	elementary	mathematical	problems,	we	will	readily	recall
some	simple	and	familiar	problem	or	problems	having	the	same	unknown.	If	the	problem	proposed	is	not
one	of	 those	simple	familiar	problems	we	naturally	 try	 to	make	use	of	what	 is	familiar	 to	us	and	profit
from	 the	 result	 of	 those	 simple	 problems.	We	 try	 to	 introduce	 some	 useful	 well-known	 thing	 into	 the
problem,	and	doing	so	we	may	get	a	good	start.

In	each	of	the	four	cases	mentioned	there	is	an	obvious	plan,	a	plausible	guess	about	the	future	course
of	the	solution.

(1)	 The	 unknown	 should	 be	 obtained	 as	 a	 side	 of	 some	 triangle.	 It	 remains	 to	 introduce	 a	 suitable
triangle	with	three	known,	or	easily	obtainable,	constituents.

(2)	The	unknown	should	be	obtained	as	an	angle	 in	some	triangle.	 It	 remains	 to	 introduce	a	suitable
triangle.



(3)	The	unknown	can	be	obtained	 if	 the	area	of	 the	base	and	 the	 length	of	 the	altitude	are	known.	 It
remains	to	find	the	area	of	a	face	and	the	corresponding	altitude.

(4)	The	unknown	should	be	obtained	as	the	intersection	of	two	loci	each	of	which	is	either	a	circle	or	a
straight	line.	It	remains	to	disentangle	such	loci	from	the	proposed	condition.

In	all	these	cases	the	plan	is	suggested	by	a	simple	problem	with	the	same	unknown	and	by	the	desire
to	use	its	result	or	its	method.	Pursuing	such	a	plan,	we	may	run	into	difficulties,	of	course,	but	we	have
some	idea	to	start	with	which	is	a	great	advantage.

4.	There	is	no	such	advantage	if	there	is	no	formerly	solved	problem	having	the	same	unknown	as	the
proposed	problem.	In	such	cases,	it	is	much	more	difficult	to	tackle	the	proposed	problem.

“Find	the	area	of	the	surface	of	a	sphere	with	given	radius.”	This	problem	was	solved	by	Archimedes.
There	 is	 scarcely	 a	 simpler	 problem	with	 the	 same	 unknown	 and	 there	was	 certainly	 no	 such	 simpler
problem	of	which	Archimedes	could	have	made	use.	 In	 fact,	Archimedes’	 solution	may	be	regarded	as
one	of	the	most	notable	mathematical	achievements.

“Find	the	area	of	the	surface	of	the	sphere	inscribed	in	a	tetrahedron	whose	six	edges	are	given.”	If	we
know	 Archimedes’	 result,	 we	 need	 not	 have	 Archimedes’	 genius	 to	 solve	 the	 problem;	 it	 remains	 to
express	the	radius	of	the	inscribed	sphere	in	terms	of	the	six	edges	of	the	tetrahedron.	This	is	not	exactly
easy	but	the	difficulty	cannot	be	compared	with	that	of	Archimedes’	problem.

To	 know	 or	 not	 to	 know	 a	 formerly	 solved	 problem	 with	 the	 same	 unknown	 may	 make	 all	 the
difference	between	an	easy	and	a	difficult	problem.

5.	When	Archimedes	found	the	area	of	the	surface	of	the	sphere	he	did	not	know,	as	we	just	mentioned,
any	formerly	solved	problem	having	the	same	unknown.	But	he	knew	various	formerly	solved	problems
having	a	similar	unknown.	There	are	curved	surfaces	whose	area	is	easier	to	obtain	than	that	of	the	sphere
and	which	were	well	known	in	Archimedes’	 time,	as	 the	 lateral	surfaces	of	 right	circular	cylinders,	of
right	circular	cones,	and	of	 the	 frustums	of	 such	cones.	We	may	be	certain	 that	Archimedes	considered
carefully	 these	 simpler	 similar	 cases.	 In	 fact,	 in	his	 solution,	he	uses	 as	 approximation	 to	 the	 sphere	 a
composite	solid	consisting	of	two	cones	and	several	frustums	of	cones	(see	DEFINITION,	6).

If	we	are	unable	to	find	a	formerly	solved	problem	having	the	same	unknown	as	the	problem	before	us,
we	try	 to	find	one	having	a	similar	unknown.	Problems	of	 the	 latter	kind	are	 less	closely	related	to	 the
problem	before	us	 than	problems	of	 the	 former	kind	and,	 therefore,	 less	easy	 to	use	 for	our	purpose	 in
general	but	they	may	be	valuable	guides	nevertheless.

6.	We	add	a	few	remarks	concerning	“problems	to	prove”;	 they	are	analogous	to	the	foregoing	more
extensive	comments	on	“problems	to	find.”

We	have	to	prove	(or	disprove)	a	clearly	stated	theorem.	Any	theorem	proved	in	the	past	which	is	in
some	way	related	 to	 the	 theorem	before	us	has	a	chance	 to	be	of	some	service.	Yet	we	may	expect	 the
most	immediate	service	of	theorems	which	have	the	same	conclusion	as	the	one	before	us.	Knowing	this,
we	 look	 at	 the	 conclusion,	 that	 is,	 we	 consider	 our	 theorem	 emphasizing	 the	 conclusion.	Our	way	 of
looking	at	the	theorem	can	be	expressed	in	writing	by	a	scheme	as:

“If	.	.	.	.	.	.	.	.	.	.	then	the	angles	are	equal.”

We	focus	our	attention	upon	the	conclusion	before	us	and	try	to	think	of	a	familiar	theorem	having	the
same	or	a	similar	conclusion.	Especially,	we	try	to	think	of	very	simple	familiar	theorems	of	this	sort.

In	 our	 case,	 there	 are	 various	 theorems	 of	 this	 kind	 and	 we	 may	 recollect	 the	 following:	 “If	 two
triangles	 are	 congruent	 the	 corresponding	 angles	 are	 equal.”	Here	 is	 a	 theorem	 related	 to	 yours	 and
proved	before.	Could	you	use	it?	Should	you	introduce	some	auxiliary	element	in	order	to	make	its	use
possible?

Following	these	suggestions,	and	trying	to	judge	the	help	afforded	by	the	theorem	we	recollected,	we



may	conceive	a	plan:	Let	us	try	to	prove	the	equality	of	the	angles	in	question	from	congruent	triangles.
We	 see	 that	 we	 must	 introduce	 a	 pair	 of	 triangles	 containing	 those	 angles	 and	 prove	 that	 they	 are
congruent.	Such	a	plan	is	certainly	good	to	start	the	work	and	it	may	lead	eventually	to	the	desired	end	as
in	section	19.

7.	Let	us	sum	up.	Recollecting	formerly	solved	problems	with	the	same	or	a	similar	unknown	(formerly
proved	 theorems	 with	 the	 same	 or	 a	 similar	 conclusion)	 we	 have	 a	 good	 chance	 to	 start	 in	 the	 right
direction	and	we	may	conceive	a	plan	of	the	solution.	In	simple	cases,	which	are	the	most	frequent	in	less
advanced	 classes,	 the	 most	 elementary	 problems	 with	 the	 same	 unknown	 (theorems	 with	 the	 same
conclusion)	are	usually	sufficient.	Trying	to	recollect	problems	with	the	same	unknown	is	an	obvious	and
common-sense	device	 (compare	what	was	 said	 in	 this	 respect	 in	 section	4).	 It	 is	 rather	 surprising	 that
such	a	simple	and	useful	device	is	not	more	widely	known;	the	author	is	inclined	to	think	that	it	was	not
even	stated	before	in	full	generality.	In	any	case,	neither	students	nor	teachers	of	mathematics	can	afford	to
ignore	 the	proper	use	of	 the	suggestion:	Look	at	 the	unknown!	And	 try	 to	 think	of	a	 familiar	problem
having	the	same	or	a	similar	unknown.

Modern	 heuristic	 endeavors	 to	 understand	 the	 process	 of	 solving	 problems,	 especially	 the	mental
operations	typically	useful	in	this	process.	It	has	various	sources	of	information	none	of	which	should	be
neglected.	A	 serious	 study	 of	 heuristic	 should	 take	 into	 account	 both	 the	 logical	 and	 the	 psychological
background,	 it	 should	not	neglect	what	 such	older	writers	as	Pappus,	Descartes,	Leibnitz,	 and	Bolzano
have	 to	 say	 about	 the	 subject,	 but	 it	 should	 least	 neglect	 unbiased	 experience.	 Experience	 in	 solving
problems	and	experience	in	watching	other	people	solving	problems	must	be	the	basis	on	which	heuristic
is	built.	In	this	study,	we	should	not	neglect	any	sort	of	problem,	and	should	find	out	common	features	in
the	way	of	handling	all	sorts	of	problems;	we	should	aim	at	general	features,	independent	of	the	subject
matter	of	 the	problem.	The	study	of	heuristic	has	“practical”	aims;	a	better	understanding	of	 the	mental
operations	typically	useful	in	solving	problems	could	exert	some	good	influence	on	teaching,	especially
on	the	teaching	of	mathematics.

The	present	book	is	a	first	attempt	toward	the	realization	of	this	program.	We	are	going	to	discuss	how
the	various	articles	of	this	Dictionary	fit	into	the	program.

1.	Our	list	is,	in	fact,	a	list	of	mental	operations	typically	useful	in	solving	problems;	the	questions	and
suggestions	 listed	hint	 at	 such	operations.	Some	of	 these	operations	 are	described	 again	 in	 the	Second
Part,	and	some	of	them	are	more	thoroughly	discussed	and	illustrated	in	the	First	Part.

For	 additional	 information	 about	 particular	 questions	 and	 suggestions	 of	 the	 list,	 the	 reader	 should
refer	to	those	fifteen	articles	of	the	Dictionary	whose	titles	are	the	first	sentences	of	the	fifteen	paragraphs
of	the	list:	WHAT	IS	THE	UNKNOWN?	IS	IT	POSSIBLE	TO	SATISFY	THE	CONDITION?	DRAW	A	FIGURE.	 .	 .	 .	CAN	YOU
USE	THE	RESULT?	The	reader,	wishing	information	about	a	particular	item	of	the	list,	should	look	at	the	first
words	of	the	paragraph	in	which	the	item	is	contained	and	then	look	up	the	article	in	the	Dictionary	that
has	those	first	words	as	 title.	For	instance,	 the	suggestion	“Go	back	 to	definitions”	 is	contained	 in	 the
paragraph	of	the	list	whose	first	sentence	is:	COULD	YOU	RESTATE	THE	PROBLEM?	Under	this	title,	the	reader
finds	 a	 cross-reference	 to	 DEFINITION	 in	 which	 article	 the	 suggestion	 in	 question	 is	 explained	 and
illustrated.

2.	The	process	of	solving	problems	is	a	complex	process	that	has	several	different	aspects.	The	twelve
principal	articles	of	this	Dictionary	study	certain	of	these	aspects	at	some	length;	we	are	going	to	mention
their	titles	in	what	follows.

When	we	are	working	intensively,	we	feel	keenly	the	progress	of	our	work;	we	are	elated	when	our
progress	is	rapid,	we	are	depressed	when	it	is	slow.	What	is	essential	to	PROGRESS	AND	ACHIEVEMENT	in
solving	problems?	The	article	discussing	this	question	is	often	quoted	in	other	parts	of	the	Dictionary	and
should	be	read	fairly	early.



Trying	 to	 solve	 a	 problem,	 we	 consider	 different	 aspects	 of	 it	 in	 turn,	 we	 roll	 it	 over	 and	 over
incessantly	in	our	mind;	VARIATION	OF	THE	PROBLEM	is	essential	to	our	work.	We	may	vary	the	problem	by
DECOMPOSING	AND	RECOMBINING	its	elements,	or	by	going	back	to	the	DEFINITION	of	certain	of	its	terms,	or
we	 may	 use	 the	 great	 resources	 of	 GENERALIZATION,	 SPECIALIZATION,	 and	 ANALOGY.	 Variation	 of	 the
problem	 may	 lead	 us	 to	 AUXILIARY	 ELEMENTS,	 or	 to	 the	 discovery	 of	 a	 more	 accessible	 AUXILIARY
PROBLEM.

We	 have	 to	 distinguish	 carefully	 between	 two	 kinds	 of	 problems,	 PROBLEMS	 TO	 FIND,	 PROBLEMS	 TO
PROVE.	Our	list	is	specially	adapted	to	“problems	to	find.”	We	have	to	revise	it	and	change	some	of	its
questions	and	suggestions	in	order	to	apply	it	also	to	“problems	to	prove.”

In	all	sorts	of	problems,	but	especially	 in	mathematical	problems	which	are	not	 too	simple,	suitable
NOTATION	and	geometrical	FIGURES	are	a	great	and	often	indispensable	help.

3.	The	process	of	solving	problems	has	many	aspects	but	some	of	them	are	not	considered	at	all	in	this
book	and	others	only	very	briefly.	 It	 is	 justified,	 I	 think,	 to	exclude	 from	a	 first	 short	exposition	points
which	could	appear	too	subtle,	or	too	technical,	or	too	controversial.

Provisional,	merely	plausible	HEURISTIC	REASONING	 is	 important	 in	discovering	 the	solution,	but	you
should	 not	 take	 it	 for	 a	 proof;	 you	must	 guess,	 but	 also	 EXAMINE	 YOUR	 GUESS.	 The	 nature	 of	 heuristic
arguments	is	discussed	in	SIGNS	OF	PROGRESS,	but	the	discussion	could	go	further.

The	consideration	of	certain	logical	patterns	is	important	in	our	subject	but	it	appeared	advisable	not
to	 introduce	 any	 technical	 article.	There	 are	 only	 two	 articles	 predominantly	 devoted	 to	 psychological
aspects,	on	DETERMINATION,	HOPE,	SUCCESS,	and	on	SUBCONSCIENT	WORK.	There	is	an	incidental	remark	on
animal	psychology;	see	WORKING	BACKWARDS.

It	 is	 emphasized	 that	 all	 sorts	 of	 problems,	 especially	 PRACTICAL	 PROBLEMS,	 and	 even	 PUZZLES,	 are
within	 the	 scope	 of	 heuristic.	 It	 is	 also	 emphasized	 that	 infallible	RULES	 OF	 DISCOVERY	 are	 beyond	 the
scope	of	serious	research.	Heuristic	discusses	human	behavior	in	the	face	of	problems;	this	has	been	in
fashion,	 presumably,	 since	 the	 beginning	 of	 human	 society,	 and	 the	 quintessence	 of	 such	 ancient
discussions	seems	to	be	preserved	in	the	WISDOM	OF	PROVERBS.

4.	A	few	articles	on	particular	questions	are	included	and	some	articles	on	more	general	aspects	are
expanded,	because	they	could	be,	or	parts	of	them	could	be,	of	special	interest	to	students	or	teachers.

There	 are	 articles	 discussing	 methodical	 questions	 often	 important	 in	 elementary	 mathematics,	 as
PAPPUS,	 WORKING	 BACKWARDS	 (already	 quoted	 under	 3),	REDUCTIO	 AD	 ABSURDUM	 AND	 INDIRECT	 PROOF,
INDUCTION	AND	MATHEMATICAL	INDUCTION,	SETTING	UP	EQUATIONS,	TEST	BY	DIMENSION,	and	WHY	PROOFS?	A
few	articles	address	themselves	more	particularly	to	teachers,	as	ROUTINE	PROBLEMS	and	DIAGNOSIS,	and
others	to	students	somewhat	more	ambitious	than	the	average,	as	THE	 INTELLIGENT	PROBLEM-SOLVER,	 THE
INTELLIGENT	READER,	and	THE	FUTURE	MATHEMATICIAN.

It	may	be	mentioned	here	that	the	dialogues	between	the	teacher	and	his	students,	given	in	sections	8,
10,	18,	19,	20	and	in	various	articles	of	the	Dictionary	may	serve	as	models	not	only	to	the	teacher	who
tries	 to	 guide	 his	 class	 but	 also	 to	 the	 problem-solver	who	works	 by	 himself.	To	describe	 thinking	 as
“mental	 discourse,”	 as	 a	 sort	 of	 conversation	 of	 the	 thinker	 with	 himself,	 is	 not	 inappropriate.	 The
dialogues	 in	 question	 show	 the	 progress	 of	 the	 solution;	 the	 problem-solver,	 talking	with	 himself,	may
progress	along	a	similar	line.

5.	We	are	not	going	to	exhaust	the	remaining	titles;	just	a	few	groups	will	be	mentioned.
Some	 articles	 contain	 remarks	 on	 the	 history	 of	 our	 subject,	 on	 DESCARTES,	 LEIBNITZ,	 BOLZANO,	 on

HEURISTIC,	on	TERMS,	OLD	AND	NEW	and	on	PAPPUS	(this	last	one	has	been	quoted	already	under	4).
A	few	articles	explain	technical	terms:	CONDITION,	COROLLARY,	LEMMA.
Some	 articles	 contain	 only	 cross-references	 (they	 are	 marked	 with	 daggers	 [†]	 in	 the	 Table	 of

Contents).



6.	Heuristic	aims	at	generality,	at	the	study	of	procedures	which	are	independent	of	the	subject-matter
and	 apply	 to	 all	 sorts	 of	 problems.	 The	 present	 exposition,	 however,	 quotes	 almost	 exclusively
elementary	mathematical	problems	as	examples.	It	should	not	be	overlooked	that	this	is	a	restriction	but	it
is	 hoped	 that	 this	 restriction	 does	 not	 impair	 seriously	 the	 trend	 of	 our	 study.	 In	 fact,	 elementary
mathematical	 problems	 present	 all	 the	 desirable	 variety,	 and	 the	 study	 of	 their	 solution	 is	 particularly
accessible	and	interesting.	Moreover,	nonmathematical	problems	although	seldom	quoted	as	examples	are
never	 completely	 forgotten.	 More	 advanced	 mathematical	 problems	 are	 never	 directly	 quoted	 but
constitute	the	real	background	of	the	present	exposition.	The	expert	mathematician	who	has	some	interest
for	this	sort	of	study	can	easily	add	examples	from	his	own	experience	to	elucidate	the	points	illustrated
by	elementary	examples	here.

7.	The	writer	of	this	book	wishes	to	acknowledge	his	indebtedness	and	express	his	gratitude	to	a	few
modern	 authors,	 not	 quoted	 in	 the	 article	 on	 HEURISTIC.	 They	 are	 the	 physicist	 and	 philosopher	 Ernst
Mach,	the	mathematician	Jacques	Hadamard,	the	psychologists	William	James	and	Wolfgang	Köhler.	He
wishes	 also	 to	 quote	 the	 psychologist	 K.	 Duncker	 and	 the	 mathematician	 F.	 Krauss	 whose	 work
(published	 after	 his	 own	 research	 was	 fairly	 advanced,	 and	 partly	 published)	 shows	 certain	 parallel
remarks.

Notation.	If	you	wish	to	realize	the	advantages	of	a	well	chosen	and	well	known	notation	try	to	add	a
few	 not	 too	 small	 numbers	 with	 the	 condition	 that	 you	 are	 not	 allowed	 to	 use	 the	 familiar	 Arabic
numerals,	although	you	may	use,	 if	you	wish	to	write,	Roman	numerals.	Take,	for	instance,	 the	numbers
MMMXC,	MDXCVI,	MDCXLVI,	MDCCLXXXI,	MDCCCLXXXVII.

We	can	scarcely	overestimate	the	importance	of	mathematical	notation.	Modern	computers,	using	the
decimal	notation,	have	a	great	advantage	over	the	ancient	computers	who	did	not	have	such	a	convenient
manner	 of	writing	 the	 numbers.	An	 average	modern	 student	who	 is	 familiar	with	 the	 usual	 notation	 of
algebra,	analytical	geometry,	and	the	differential	and	integral	calculus,	has	an	immense	advantage	over	a
Greek	mathematician	 in	 solving	 the	 problems	 about	 areas	 and	 volumes	which	 exercised	 the	 genius	 of
Archimedes.

1.	Speaking	and	thinking	are	closely	connected,	the	use	of	words	assists	the	mind.	Certain	philosophers
and	 philologists	went	 a	 little	 further	 and	 asserted	 that	 the	 use	 of	words	 is	 indispensable	 to	 the	 use	 of
reason.

Yet	 this	 last	 assertion	 appears	 somewhat	 exaggerated.	 If	 we	 have	 a	 little	 experience	 of	 serious
mathematical	work	we	know	that	we	can	do	a	piece	of	pretty	hard	thinking	without	using	any	words,	just
looking	 at	 geometric	 figures	 or	 manipulating	 algebraic	 symbols.	 Figures	 and	 symbols	 are	 closely
connected	with	mathematical	thinking,	their	use	assists	the	mind.	We	could	improve	that	somewhat	narrow
assertion	of	philosophers	and	philologists	by	bringing	 the	words	 into	 line	with	other	sorts	of	signs	and
saying	that	the	use	of	signs	appears	to	be	indispensable	to	the	use	of	reason.

At	 any	 rate,	 the	 use	 of	mathematical	 symbols	 is	 similar	 to	 the	 use	 of	words.	Mathematical	 notation
appears	as	a	sort	of	language,	une	langue	bien	faite,	a	language	well	adapted	to	its	purpose,	concise	and
precise,	with	rules	which,	unlike	the	rules	of	ordinary	grammar,	suffer	no	exception.

If	we	accept	 this	viewpoint,	SETTING	UP	EQUATIONS	 appears	as	a	 sort	of	 translation,	 translation	 from
ordinary	language	into	the	language	of	mathematical	symbols.

2.	Some	mathematical	symbols,	as	+,	−,	=,	and	several	others,	have	a	 fixed	 traditional	meaning,	but
other	symbols,	as	 the	small	and	capital	 letters	of	 the	Roman	and	Greek	alphabets,	are	used	 in	different
meanings	in	different	problems.	When	we	face	a	new	problem,	we	must	choose	certain	symbols,	we	have
to	 introduce	 suitable	 notation.	 There	 is	 something	 analogous	 in	 the	 use	 of	 ordinary	 language.	 Many
words	 are	 used	 in	 different	 meanings	 in	 different	 contexts;	 when	 precision	 is	 important,	 we	 have	 to
choose	our	words	carefully.



An	important	step	in	solving	a	problem	is	to	choose	the	notation.	It	should	be	done	carefully.	The	time
we	 spend	 now	 on	 choosing	 the	 notation	 may	 be	 well	 repaid	 by	 the	 time	 we	 save	 later	 by	 avoiding
hesitation	 and	 confusion.	 Moreover,	 choosing	 the	 notation	 carefully,	 we	 have	 to	 think	 sharply	 of	 the
elements	 of	 the	 problem	 which	 must	 be	 denoted.	 Thus,	 choosing	 a	 suitable	 notation	 may	 contribute
essentially	to	understanding	the	problem.

3.	A	good	notation	should	be	unambiguous,	pregnant,	easy	to	remember;	it	should	avoid	harmful	second
meanings,	and	take	advantage	of	useful	second	meanings;	the	order	and	connection	of	signs	should	suggest
the	order	and	connection	of	things.

4.	 Signs	 must	 be,	 first	 of	 all,	 unambiguous.	 It	 is	 inadmissible	 that	 the	 same	 symbol	 denote	 two
different	 objects	 in	 the	 same	 inquiry.	 If,	 solving	 a	problem,	you	 call	 a	 certain	magnitude	a	 you	 should
avoid	calling	anything	else	a	which	is	connected	with	the	same	problem.	Of	course,	you	may	use	the	letter
a	in	a	different	meaning	in	a	different	problem.

Although	it	is	forbidden	to	use	the	same	symbol	for	different	objects	it	is	not	forbidden	to	use	different
symbols	for	the	same	object.	Thus,	the	product	of	a	and	b	may	be	written	as

a	×	b					a	·	b					ab.

In	some	cases,	it	is	advantageous	to	use	two	or	more	different	signs	for	the	same	object,	but	such	cases
require	particular	 care.	Usually,	 it	 is	 better	 to	 use	 just	 one	 sign	 for	 one	 object,	 and	 in	 no	 case	 should
several	signs	be	used	wantonly.

5.	A	good	sign	should	be	easy	to	remember	and	easy	to	recognize;	the	sign	should	immediately	remind
us	of	the	object	and	the	object	of	the	sign.

A	 simple	 device	 to	 make	 signs	 easily	 recognizable	 is	 to	 use	 initials	 as	 symbols.	 For	 example,	 in
section	20	we	used	r	for	rate,	t	for	time,	V	for	volume.	We	cannot	use,	however,	initials	in	all	cases.	Thus,
in	section	20,	we	had	to	consider	a	radius	but	we	could	not	call	it	r	because	this	letter	was	already	taken
to	denote	a	rate.	There	are	still	other	motives	restricting	the	choice	of	symbols,	and	other	means	to	make
them	easily	recognizable	which	we	are	going	to	discuss.

6.	Notation	is	not	only	easily	recognizable	but	particularly	helpful	in	shaping	our	conception	when	the
order	and	connection	of	 the	 signs	 suggest	 the	order	and	connection	of	 the	objects.	We	need	 several
examples	to	illustrate	this	point.

(I)	 In	order	 to	denote	objects	which	are	near	 to	each	other	 in	 the	conception	of	 the	problem	we	use
letters	which	are	near	to	each	other	in	the	alphabet.

Thus,	 we	 generally	 use	 letters	 at	 the	 beginning	 of	 the	 alphabet	 as	 a,	 b,	 c,	 for	 given	 quantities	 or
constants,	and	letters	at	the	end	of	the	alphabet	as	x,	y,	z,	for	unknown	quantities	or	variables.

In	 section	 8	 we	 used	 a,	 b,	 c	 for	 the	 given	 length,	 width,	 and	 height	 of	 a	 parallelepiped.	 On	 this
occasion,	the	notation	a,	b,	c	was	preferable	to	the	notation	by	initials	l,	w,	h.	The	three	lengths	played	the
same	role	 in	 the	problem	which	 is	emphasized	by	 the	use	of	successive	 letters.	Moreover,	being	at	 the
beginning	of	the	alphabet,	a,	b,	c	are,	as	we	just	said,	the	most	usual	letters	to	denote	given	quantities.	On
some	other	occasion,	if	the	three	lengths	play	different	roles	and	it	is	important	to	know	which	lengths	are
horizontal	and	which	one	is	vertical,	the	notation	l,	w,	h	might	be	preferable.

(II)	In	order	to	denote	objects	belonging	to	the	same	category,	we	frequently	choose	letters	belonging
to	 the	 same	alphabet	 for	one	category,	using	different	 alphabets	 for	different	 categories.	Thus,	 in	plane
geometry	we	often	use:

Roman	capitals	as	A,	B,	C,	.	.	.	for	points,
small	Roman	letters	as	a,	b,	c,	.	.	.	for	lines,
small	Greek	letters	as	α,	β,	γ,	.	.	.	for	angles.



If	 there	are	 two	objects	belonging	to	different	categories	but	having	some	particular	relation	to	each
other	which	 is	 important	 for	our	problem,	we	may	choose,	 to	denote	 these	 two	objects,	 corresponding
letters	of	the	respective	alphabets	as	A	and	a,	B	and	b,	and	so	on.	A	familiar	example	is	the	usual	notation
for	a	triangle:

A,	B,	C	stand	for	the	vertices,
a,	b,	c	for	the	sides,
α,	β,	γ	for	the	angles.

It	is	understood	that	a	is	the	side	opposite	to	the	vertex	A	and	the	angle	at	A	is	called	α.
(III)	 In	 section	 20,	 the	 letters	 a,	 b,	 x,	 y	 are	 particularly	 well	 chosen	 to	 indicate	 the	 nature	 and

connection	of	 the	elements	denoted.	The	letters	a,	b	hint	 that	 the	magnitudes	denoted	are	constants;	x,	y
indicate	variables;	a	precedes	b	as	x	precedes	y	and	this	suggests	that	a	is	in	the	same	relation	to	b	as	x	is
to	y.	In	fact,	a	and	x	are	horizontal,	b	and	y	vertical,	and	a	:	b	=	x	:	y.

7.	The	notation

Δ	ABC	~	Δ	EFG

indicates	that	the	two	triangles	in	question	are	similar.	In	modern	books,	the	formula	is	meant	to	indicate
that	the	two	triangles	are	similar,	the	vertices	corresponding	to	each	other	in	the	order	as	they	are	written,
A	to	E,	B	to	F,	C	to	G.	In	older	books,	this	proviso	about	the	order	was	not	yet	introduced;	the	reader	had
to	look	at	the	figure	or	remember	the	derivation	in	order	to	ascertain	which	vertex	corresponded	to	which.

The	modern	notation	 is	much	preferable	 to	 the	older	one.	Using	 the	modern	notation,	we	may	draw
consequences	from	the	formula	without	looking	at	the	figure.	Thus,	we	may	derive	that

∠A	=	∠E
AB	:	BC	=	EF	:	FG

and	other	relations	of	the	same	kind.	The	older	notation	expresses	less	and	does	not	allow	such	definite
consequences.

A	 notation	 expressing	 more	 than	 another	 may	 be	 termed	 more	 pregnant.	 The	 modern	 notation	 for
similitude	 of	 triangles	 is	more	 pregnant	 than	 the	 older	 one,	 reflects	 the	 order	 and	 connection	 of	 things
more	fully	than	the	older	one,	and	therefore,	it	may	serve	as	basis	for	more	consequences	than	the	older
one.

8.	Words	have	second	meanings.	Certain	contexts	in	which	a	word	is	often	used	influence	it	and	add
something	to	its	primary	meaning,	some	shade,	or	second	meaning,	or	“connotation.”	If	we	write	carefully,
we	try	to	choose	among	the	words	having	almost	the	same	meaning	the	one	whose	second	meaning	is	best
adapted.

There	is	something	similar	in	mathematical	notation.	Even	mathematical	symbols	may	acquire	a	sort	of
second	meaning	from	contexts	in	which	they	are	often	used.	If	we	choose	our	notation	carefully,	we	have
to	take	this	circumstance	into	account.	Let	us	illustrate	the	point.

There	 are	 certain	 letters	 which	 have	 acquired	 a	 firmly	 rooted,	 traditional	 meaning.	 Thus,	 e	 stands
usually	 for	 the	 basis	 of	 natural	 logarithms,	 i	 for	 ,	 the	 imaginary	 unit,	 and	π	 for	 the	 ratio	 of	 the
circumference	of	 the	 circle	 to	 the	diameter.	 It	 is	 on	 the	whole	better	 to	use	 such	 symbols	only	 in	 their
traditional	 meaning.	 If	 we	 use	 such	 a	 symbol	 in	 some	 other	 meaning	 its	 traditional	 meaning	 could
occasionally	 interfere	and	be	embarrassing,	even	misleading.	 It	 is	 true	 that	harmful	second	meanings	of
this	sort	give	less	trouble	to	the	beginner	who	has	not	yet	studied	many	subjects	than	to	the	mathematician
who	should	have	sufficient	experience	to	deal	with	such	nuisances.

Second	meanings	of	the	symbols	can	also	be	helpful,	even	very	helpful,	if	they	are	used	with	tact.	A



notation	used	on	former	occasions	may	assist	us	in	recalling	some	useful	procedure;	of	course,	we	should
be	 sufficiently	 careful	 to	 separate	 clearly	 the	present	 (primary)	meaning	of	 the	 symbol	 from	 its	 former
(secondary)	meaning.	A	standing	notation	[as	the	traditional	notation	for	the	parts	of	the	triangle	which
we	mentioned	before,	6	(II)]	has	great	advantages;	used	on	several	former	occasions	it	may	assist	us	in
recalling	 various	 formerly	 used	 procedures.	We	 remember	 our	 formulas	 in	 some	 standing	 notation.	Of
course,	we	should	be	sufficiently	careful	when,	owing	to	particular	circumstances,	we	are	obliged	to	use
a	standing	notation	in	a	meaning	somewhat	different	from	the	usual	one.

9.	When	we	have	 to	 choose	between	 two	notations,	 one	 reason	may	 speak	 for	 one,	 and	 some	other
reason	 for	 the	 other.	We	 need	 experience	 and	 taste	 to	 choose	 the	 more	 suitable	 notation	 as	 we	 need
experience	and	taste	to	choose	more	suitable	words.	Yet	it	 is	good	to	know	the	various	advantages	and
disadvantages	discussed	in	the	foregoing.	At	any	rate,	we	should	choose	our	notation	carefully,	and	have
some	good	reason	for	our	choice.

10.	 Not	 only	 the	 most	 hopeless	 boys	 in	 the	 class	 but	 also	 quite	 intelligent	 students	 may	 have	 an
aversion	 for	 algebra.	There	 is	 always	 something	 arbitrary	 and	 artificial	 about	 notation;	 to	 learn	 a	 new
notation	is	a	burden	for	the	memory.	The	intelligent	student	refuses	to	assume	the	burden	if	he	does	not	see
any	compensation	for	it.	The	intelligent	student	is	justified	in	his	aversion	for	algebra	if	he	is	not	given
ample	opportunity	to	convince	himself	by	his	own	experience	that	the	language	of	mathematical	symbols
assists	 the	mind.	 To	 help	 him	 to	 such	 experience	 is	 an	 important	 task	 of	 the	 teacher,	 one	 of	 his	most
important	tasks.

I	say	that	it	is	an	important	task	but	I	do	not	say	that	it	is	an	easy	one.	The	foregoing	remarks	may	be	of
some	help.	See	also	SETTING	UP	EQUATIONS.	Checking	a	formula	by	extensive	discussion	of	its	properties
may	 be	 recommended	 as	 a	 particularly	 instructive	 exercise;	 see	 section	 14	 and	 CAN	 YOU	 CHECK	 THE
RESULT?	2.

Pappus,	an	important	Greek	mathematician,	lived	probably	around	A.D.	300.	In	the	seventh	book	of	his
Collectiones,	Pappus	 reports	about	a	branch	of	 study	which	he	calls	analyomenos.	We	can	 render	 this
name	in	English	as	“Treasury	of	Analysis,”	or	as	“Art	of	Solving	Problems,”	or	even	as	“Heuristic”;	the
last	term	seems	to	be	preferable	here.	A	good	English	translation	of	Pappus’s	report	is	easily	accessible7;
what	follows	is	a	free	rendering	of	the	original	text:

“The	so-called	Heuristic	is,	to	put	it	shortly,	a	special	body	of	doctrine	for	the	use	of	those	who,	after
having	 studied	 the	 ordinary	 Elements,	 are	 desirous	 of	 acquiring	 the	 ability	 to	 solve	 mathematical
problems,	and	it	is	useful	for	this	alone.	It	is	the	work	of	three	men,	Euclid,	the	author	of	the	Elements,
Apollonius	of	Perga,	and	Aristaeus	the	elder.	It	teaches	the	procedures	of	analysis	and	synthesis.

“In	analysis,	we	start	from	what	is	required,	we	take	it	for	granted,	and	we	draw	consequences	from	it,
and	 consequences	 from	 the	 consequences,	 till	 we	 reach	 a	 point	 that	 we	 can	 use	 as	 starting	 point	 in
synthesis.	 For	 in	 analysis	we	 assume	what	 is	 required	 to	 be	 done	 as	 already	 done	 (what	 is	 sought	 as
already	found,	what	we	have	to	prove	as	true).	We	inquire	from	what	antecedent	the	desired	result	could
be	derived;	then	we	inquire	again	what	could	be	the	antecedent	of	that	antecedent,	and	so	on,	until	passing
from	 antecedent	 to	 antecedent,	we	 come	 eventually	 upon	 something	 already	 known	 or	 admittedly	 true.
This	procedure	we	call	analysis,	or	solution	backwards,	or	regressive	reasoning.

“But	 in	synthesis,	 reversing	 the	process,	we	start	 from	the	point	which	we	reached	 last	of	all	 in	 the
analysis,	 from	 the	 thing	 already	 known	 or	 admittedly	 true.	We	 derive	 from	 it	 what	 preceded	 it	 in	 the
analysis,	and	go	on	making	derivations	until,	retracing	our	steps,	we	finally	succeed	in	arriving	at	what	is
required.	This	procedure	we	call	synthesis,	or	constructive	solution,	or	progressive	reasoning.

“Now	 analysis	 is	 of	 two	 kinds;	 the	 one	 is	 the	 analysis	 of	 the	 ‘problems	 to	 prove’	 and	 aims	 at
establishing	 true	 theorems;	 the	 other	 is	 the	 analysis	 of	 the	 ‘problems	 to	 find’	 and	 aims	 at	 finding	 the
unknown.



“If	we	have	a	‘problem	to	prove’	we	are	required	to	prove	or	disprove	a	clearly	stated	theorem	A.	We
do	not	know	yet	whether	A	is	true	or	false;	but	we	derive	from	A	another	theorem	B,	from	B	another	C,	and
so	on,	until	we	come	upon	a	last	theorem	L	about	which	we	have	definite	knowledge.	If	L	is	true,	A	will
be	also	 true,	provided	 that	all	our	derivations	are	convertible.	From	L	we	prove	 the	 theorem	K	 which
preceded	L	 in	 the	analysis	and,	proceding	 in	 the	 same	way,	we	 retrace	our	 steps;	 from	C	we	prove	B,
from	B	we	prove	A,	and	so	we	attain	our	aim.	If,	however,	L	is	false,	we	have	proved	A	false.

“If	we	have	a	‘problem	to	find’	we	are	required	to	find	a	certain	unknown	x	satisfying	a	clearly	stated
condition.	We	do	not	know	yet	whether	a	thing	satisfying	such	a	condition	is	possible	or	not;	but	assuming
that	 there	 is	 an	 x	 satisfying	 the	 condition	 imposed	we	 derive	 from	 it	 another	 unknown	 y	 which	 has	 to
satisfy	a	related	condition;	then	we	link	y	to	still	another	unknown,	and	so	on,	until	we	come	upon	a	last
unknown	z	which	we	 can	 find	 by	 some	known	method.	 If	 there	 is	 actually	 a	 z	 satisfying	 the	 condition
imposed	upon	it,	there	will	be	also	an	x	satisfying	the	original	condition,	provided	that	all	our	derivations
are	 convertible.	We	 first	 find	 z;	 then,	knowing	 z,	we	 find	 the	unknown	 that	 preceded	 z	 in	 the	 analysis;
proceeding	in	the	same	way,	we	retrace	our	steps,	and	finally,	knowing	y,	we	obtain	x,	and	so	we	attain
our	 aim.	 If,	 however,	 there	 is	 nothing	 that	 would	 satisfy	 the	 condition	 imposed	 upon	 z,	 the	 problem
concerning	x	has	no	solution.”

We	should	not	forget	that	the	foregoing	is	not	a	literal	translation	but	a	free	rendering,	a	paraphrase.
Various	 differences	 between	 the	 original	 and	 the	 paraphrase	 deserve	 comment,	 for	 Pappus’s	 text	 is
important	in	many	ways.

1.	Our	paraphrase	uses	 a	more	definite	 terminology	 than	 the	original	 and	 introduces	 the	 symbols	A,
B,	.	.	.	L,	x,	y,	.	.	.	z	which	the	original	has	not.

2.	 The	 paraphrase	 has	 (p.	 141,	 line	 30)	 “mathematical	 problems”	 where	 the	 original	 means
“geometrical	 problems.”	 This	 emphasizes	 that	 the	 procedures	 described	 by	 Pappus	 are	 by	 no	 means
restricted	to	geometric	problems;	they	are,	in	fact,	not	even	restricted	to	mathematical	problems.	We	have
to	illustrate	this	by	examples	since,	in	these	matters,	generality	and	independence	from	the	nature	of	the
subject	are	important	(see	section	3).

3.	Algebraic	illustration.	Find	x	satisfying	the	equation

This	is	a	“problem	to	find,”	not	too	easy	for	a	beginner.	He	has	to	be	familiar	with	the	idea	of	analysis;
not	 with	 the	 word	 “analysis”	 of	 course,	 but	 with	 the	 idea	 of	 attaining	 the	 aim	 by	 repeated	 reduction.
Moreover,	he	has	to	be	familiar	with	the	simplest	sorts	of	equations.	Even	with	some	knowledge,	it	takes
a	good	idea,	a	little	luck,	a	little	invention	to	observe	that,	since	4∞	=	(2∞)2	and	4−∞	=	(2∞)−2,	 it	may	be
advantageous	to	introduce

y	=	2∞.

Now,	this	substitution	is	really	advantageous,	the	equation	obtained	for	y

appears	simpler	than	the	original	equation;	but	our	task	is	not	yet	finished.	It	needs	another	little	invention,
another	substitution



which	transforms	the	condition	into

8z2	−	54z	+	85	=	0.

Here	 the	 analysis	 ends,	 provided	 that	 the	 problem-solver	 is	 acquainted	with	 the	 solution	 of	 quadratic
equations.

What	is	the	synthesis?	Carrying	through,	step	by	step,	the	calculations	whose	possibility	was	foreseen
by	 the	 analysis.	The	problem-solver	needs	no	new	 idea	 to	 finish	his	 problem,	only	 some	patience	 and
attention	 in	 calculating	 the	 various	 unknowns.	 The	 order	 of	 calculation	 is	 opposite	 to	 the	 order	 of
invention;	first	z	is	found	(z	=	5/2,	17/4),	then	y	(y	=	2,	1/2,	4,	1/4),	and	finally	the	originally	required	x	(x
=	1,	−1,	2,	−2).	The	synthesis	retraces	the	steps	of	the	analysis,	and	it	is	easy	to	see	in	the	present	case
why	it	does	so.

4.	Nonmathematical	illustration.	A	primitive	man	wishes	to	cross	a	creek;	but	he	cannot	do	so	in	the
usual	way	because	 the	water	has	 risen	overnight.	Thus,	 the	 crossing	becomes	 the	object	of	 a	problem;
“crossing	the	creek”	is	the	x	of	this	primitive	problem.	The	man	may	recall	that	he	has	crossed	some	other
creek	by	walking	along	a	fallen	tree.	He	looks	around	for	a	suitable	fallen	tree	which	becomes	his	new
unknown,	his	y.	He	cannot	find	any	suitable	tree	but	there	are	plenty	of	trees	standing	along	the	creek;	he
wishes	that	one	of	them	would	fall.	Could	he	make	a	tree	fall	across	the	creek?	There	is	a	great	idea	and
there	is	a	new	unknown;	by	what	means	could	he	tilt	the	tree	over	the	creek?

This	train	of	ideas	ought	to	be	called	analysis	if	we	accept	the	terminology	of	Pappus.	If	the	primitive
man	succeeds	in	finishing	his	analysis	he	may	become	the	inventor	of	the	bridge	and	of	the	axe.	What	will
be	the	synthesis?	Translation	of	 ideas	 into	actions.	The	finishing	act	of	 the	synthesis	 is	walking	along	a
tree	across	the	creek.

The	same	objects	fill	the	analysis	and	the	synthesis;	they	exercise	the	mind	of	the	man	in	the	analysis
and	his	muscles	in	the	synthesis;	the	analysis	consists	in	thoughts,	the	synthesis	in	acts.	There	is	another
difference;	 the	 order	 is	 reversed.	Walking	 across	 the	 creek	 is	 the	 first	 desire	 from	which	 the	 analysis
starts	and	it	is	the	last	act	with	which	the	synthesis	ends.

5.	The	paraphrase	hints	a	little	more	distinctly	than	the	original	the	natural	connection	between	analysis
and	synthesis.	This	connection	 is	manifest	 after	 the	 foregoing	examples.	Analysis	comes	naturally	 first,
synthesis	 afterwards;	 analysis	 is	 invention,	 synthesis,	 execution;	analysis	 is	 devising	 a	 plan,	 synthesis
carrying	through	the	plan.

6.	 The	 paraphrase	 preserves	 and	 even	 emphasizes	 certain	 curious	 phrases	 of	 the	 original:	 “assume
what	is	required	to	be	done	as	already	done,	what	is	sought	as	found,	what	you	have	to	prove	as	true.”
This	 is	 paradoxical;	 is	 it	 not	mere	 self-deception	 to	 assume	 that	 the	 problem	 that	we	 have	 to	 solve	 is
solved?	 This	 is	 obscure;	 what	 does	 it	 mean?	 If	 we	 consider	 closely	 the	 context	 and	 try	 honestly	 to
understand	our	own	experience	in	solving	problems,	the	meaning	can	scarcely	be	doubtful.

Let	us	first	consider	a	“problem	to	find.”	Let	us	call	the	unknown	x	and	the	data	a,	b,	c.	To	“assume	the
problem	as	solved”	means	to	assume	that	there	exists	an	object	x	satisfying	the	condition—that	is,	having
those	relations	to	the	data	a,	b,	c	which	the	condition	prescribes.	This	assumption	is	made	just	in	order	to
start	the	analysis,	it	is	provisional,	and	it	is	harmless.	For,	if	there	is	no	such	object	and	the	analysis	leads
us	anywhere,	it	is	bound	to	lead	us	to	a	final	problem	that	has	no	solution	and	hence	it	will	be	manifest
that	 our	 original	 problem	 has	 no	 solution.	 Then,	 the	 assumption	 is	 useful.	 In	 order	 to	 examine	 the
condition,	 we	 have	 to	 conceive,	 to	 represent	 to	 ourselves,	 or	 to	 visualize	 geometrically	 the	 relations
which	 the	 condition	 prescribes	 between	 x	 and	 a,	 b,	 c;	 how	 could	 we	 do	 so	 without	 conceiving,
representing,	or	visualizing	x	 as	 existent?	Finally,	 the	 assumption	 is	 natural.	The	 primitive	man	whose
thoughts	and	deeds	we	discussed	in	comment	4	imagines	himself	walking	on	a	fallen	tree	and	crossing	the
creek	long	before	he	actually	can	do	so;	he	sees	his	problem	“as	solved.”



The	object	of	a	“problem	to	prove”	is	to	prove	a	certain	theorem	A.	The	advice	to	“assume	A	as	true”
is	just	an	invitation	to	draw	consequences	from	the	theorem	A	although	we	have	not	yet	proved	it.	People
with	a	certain	mental	character	or	a	certain	philosophy	may	shrink	from	drawing	consequences	from	an
unproved	theorem;	but	such	people	cannot	start	an	analysis.

Compare	FIGURES,	2.
7.	The	paraphrase	uses	twice	the	important	phrase	“provided	that	all	our	derivations	are	convertible”;

see	p.	142,	line	33	and	p.	143,	lines	14–15.	This	is	an	interpolation;	the	original	contains	nothing	of	the
sort	and	the	lack	of	such	a	proviso	was	observed	and	criticized	in	modern	times.	See	AUXILIARY	PROBLEM,
6	for	the	notion	of	“convertible	reduction.”

8.	The	“analysis	of	the	problems	to	prove”	is	explained	in	the	paraphrase	in	words	quite	different	from
those	used	by	the	original	but	there	is	no	change	in	the	sense;	at	any	rate,	there	is	no	intention	to	change	the
sense.	The	analysis	of	 the	“problem	 to	 find,”	 however,	 is	 explained	more	concretely	 in	 the	paraphrase
than	in	the	original.	The	original	seems	to	aim	at	the	description	of	a	somewhat	more	general	procedure,
the	construction	of	a	chain	of	equivalent	auxiliary	problems	which	is	described	in	AUXILIARY	PROBLEM,
7.

9.	 Many	 elementary	 textbooks	 of	 geometry	 contain	 a	 few	 remarks	 about	 analysis,	 synthesis,	 and
“assuming	the	problem	as	solved.”	There	is	little	doubt	that	this	almost	ineradicable	tradition	goes	back
to	Pappus,	although	there	is	hardly	a	current	textbook	whose	writer	would	show	any	direct	acquaintance
with	 Pappus.	 The	 subject	 is	 important	 enough	 to	 be	 mentioned	 in	 elementary	 textbooks	 but	 easily
misunderstood.	The	circumstance	alone	that	it	is	restricted	to	textbooks	of	geometry	shows	a	current	lack
of	 understanding;	 see	 comment	 2	 above.	 If	 the	 foregoing	 comments	 could	 contribute	 to	 a	 better
understanding	of	this	matter	their	length	would	be	amply	justified.

For	another	example,	a	different	viewpoint,	and	further	comments	see	WORKING	BACKWARDS.
Compare	also	REDUCTIO	AD	ABSURDUM	AND	INDIRECT	PROOF,	2.

Pedantry	and	mastery	are	opposite	attitudes	toward	rules.
1.	To	apply	a	 rule	 to	 the	 letter,	 rigidly,	unquestioningly,	 in	cases	where	 it	 fits	and	 in	cases	where	 it

does	not	fit,	is	pedantry.	Some	pedants	are	poor	fools;	they	never	did	understand	the	rule	which	they	apply
so	conscientiously	and	so	indiscriminately.	Some	pedants	are	quite	successful;	they	understood	their	rule,
at	least	in	the	beginning	(before	they	became	pedants),	and	chose	a	good	one	that	fits	in	many	cases	and
fails	only	occasionally.

To	apply	 a	 rule	with	natural	 ease,	with	 judgment,	 noticing	 the	 cases	where	 it	 fits,	 and	without	 ever
letting	 the	words	 of	 the	 rule	 obscure	 the	 purpose	 of	 the	 action	 or	 the	 opportunities	 of	 the	 situation,	 is
mastery.

2.	The	questions	and	suggestions	of	our	 list	may	be	helpful	both	to	problem-solvers	and	to	teachers.
But,	 first,	 they	must	be	understood,	 their	proper	use	must	be	 learned,	and	learned	by	trial	and	error,	by
failure	and	success,	by	experience	in	applying	them.	Second,	their	use	should	never	become	pedantic.	You
should	ask	no	question,	make	no	suggestion,	indiscriminately,	following	some	rigid	habit.	Be	prepared	for
various	questions	and	suggestions	and	use	your	judgment.	You	are	doing	a	hard	and	exciting	problem;	the
step	you	are	going	to	try	next	should	be	prompted	by	an	attentive	and	open-minded	consideration	of	the
problem	before	 you.	You	wish	 to	 help	 a	 student;	what	 you	 say	 to	 your	 student	 should	 proceed	 from	 a
sympathetic	understanding	of	his	difficulties.

And	if	you	are	inclined	to	be	a	pedant	and	must	rely	upon	some	rule	learn	this	one:	Always	use	your
own	brains	first.

Practical	 problems	 are	 different	 in	 various	 respects	 from	 purely	 mathematical	 problems,	 yet	 the
principal	motives	and	procedures	of	the	solution	are	essentially	the	same.	Practical	engineering	problems



usually	 involve	mathematical	problems.	We	will	say	a	few	words	about	 the	differences,	analogies,	and
connections	between	these	two	sorts	of	problems.

1.	An	 impressive	practical	problem	is	 the	construction	of	a	dam	across	a	 river.	We	need	no	special
knowledge	 to	 understand	 this	 problem.	 In	 almost	 prehistoric	 times,	 long	 before	 our	 modern	 age	 of
scientific	theories,	men	built	dams	of	some	sort	in	the	valley	of	the	Nile,	and	in	other	parts	of	the	world,
where	the	crops	depended	on	irrigation.

Let	us	visualize	the	problem	of	constructing	an	important	modern	dam.
What	is	the	unknown?	Many	unknowns	are	involved	in	a	problem	of	this	kind:	the	exact	location	of	the

dam,	its	geometric	shape	and	dimensions,	the	materials	used	in	its	construction,	and	so	on.
What	is	the	condition?	We	cannot	answer	this	question	in	one	short	sentence	because	there	are	many

conditions.	In	so	large	a	project	it	is	necessary	to	satisfy	many	important	economic	needs	and	to	hurt	other
needs	as	little	as	possible.	The	dam	should	provide	electric	power,	supply	water	for	irrigation	or	the	use
of	certain	communities,	and	also	help	 to	control	floods.	On	the	other	hand,	 it	should	disturb	as	 little	as
possible	 navigation,	 or	 economically	 important	 fish-life,	 or	 beautiful	 scenery;	 and	 so	 forth.	 And,	 of
course,	it	should	cost	as	little	as	possible	and	be	constructed	as	quickly	as	possible.
What	 are	 the	 data?	 The	 multitude	 of	 desirable	 data	 is	 tremendous.	 We	 need	 topographical	 data

concerning	 the	 vicinity	 of	 the	 river	 and	 its	 tributaries;	 geological	 data	 important	 for	 the	 solidity	 of
foundations,	possible	leakage,	and	available	materials	of	construction;	meteorological	data	about	annual
precipitation	 and	 the	 height	 of	 floods;	 economic	 data	 concerning	 the	 value	 of	 ground	 which	 will	 be
flooded,	cost	of	materials	and	labor;	and	so	on.

Our	example	shows	that	unknowns,	data,	and	conditions	are	more	complex	and	less	sharply	defined	in
a	practical	problem	than	in	a	mathematical	problem.

2.	 In	 order	 to	 solve	 a	 problem,	 we	 need	 a	 certain	 amount	 of	 previously	 acquired	 knowledge.	 The
modern	engineer	has	a	highly	 specialized	body	of	knowledge	at	his	disposal,	 a	 scientific	 theory	of	 the
strength	 of	 materials,	 his	 own	 experience,	 and	 the	 mass	 of	 engineering	 experience	 stored	 in	 special
technical	literature.	We	cannot	avail	ourselves	of	such	special	knowledge	here	but	we	may	try	to	imagine
what	was	in	the	mind	of	an	ancient	Egyptian	dam-builder.

He	has	seen,	of	course,	various	other,	perhaps	smaller,	dams:	banks	of	earth	or	masonry	holding	back
the	water.	He	has	seen	the	flood,	laden	with	all	sorts	of	debris,	pressing	against	the	bank.	He	might	have
helped	to	repair	the	cracks	and	the	erosion	left	by	the	flood.	He	might	have	seen	a	dam	break,	giving	way
under	the	impact	of	the	flood.	He	has	certainly	heard	stories	about	dams	withstanding	the	test	of	centuries
or	 causing	 catastrophe	 by	 an	 unexpected	 break.	His	mind	may	 have	 pictured	 the	 pressure	 of	 the	 river
against	the	surface	of	the	dam	and	the	strain	and	stress	in	its	interior.

Yet	 the	Egyptian	dam-builder	had	no	precise,	quantitative,	scientific	concepts	of	fluid	pressure	or	of
strain	and	stress	in	a	solid	body.	Such	concepts	form	an	essential	part	of	the	intellectual	equipment	of	a
modern	 engineer.	Yet	 the	 latter	 also	 uses	much	 knowledge	which	 has	 not	 yet	 quite	 reached	 a	 precise,
scientific	 level;	what	he	knows	about	erosion	by	 flowing	water,	 the	 transportation	of	silt,	 the	plasticity
and	 other	 not	 quite	 clearly	 circumscribed	 properties	 of	 certain	 materials,	 is	 knowledge	 of	 a	 rather
empirical	character.

Our	 example	 shows	 that	 the	 knowledge	 needed	 and	 the	 concepts	 used	 are	 more	 complex	 and	 less
sharply	defined	in	practical	problems	than	in	mathematical	problems.

3.	 Unknowns,	 data,	 conditions,	 concepts,	 necessary	 preliminary	 knowledge,	 everything	 is	 more
complex	and	less	sharp	in	practical	problems	than	in	purely	mathematical	problems.	This	is	an	important
difference,	perhaps	 the	main	difference,	and	 it	certainly	 implies	further	differences;	yet	 the	fundamental
motives	and	procedures	of	the	solution	appear	to	be	the	same	for	both	sorts	of	problems.

There	 is	 a	 widespread	 opinion	 that	 practical	 problems	 need	 more	 experience	 than	 mathematical



problems.	This	may	be	so.	Yet,	very	likely,	the	difference	lies	in	the	nature	of	the	knowledge	needed	and
not	in	our	attitude	toward	the	problem.	In	solving	a	problem	of	one	or	the	other	kind,	we	have	to	rely	on
our	experience	with	similar	problems	and	we	often	ask	the	questions:	Have	you	seen	the	same	problem
in	a	slightly	different	form?	Do	you	know	a	related	problem?

In	solving	a	mathematical	problem,	we	start	from	very	clear	concepts	which	are	fairly	well	ordered	in
our	mind.	In	solving	a	practical	problem,	we	are	often	obliged	to	start	from	rather	hazy	ideas;	then,	the
clarification	of	the	concepts	may	become	an	important	part	of	the	problem.	Thus,	medical	science	is	in	a
better	position	to	check	infectious	diseases	today	than	it	was	in	the	times	before	Pasteur	when	the	notion
of	 infection	 itself	was	 rather	hazy.	Have	 you	 taken	 into	account	 all	 essential	 notions	 involved	 in	 the
problem?	This	is	a	good	question	for	all	sorts	of	problems	but	its	use	varies	widely	with	the	nature	of	the
intervening	notions.

In	a	perfectly	stated	mathematical	problem	all	data	and	all	clauses	of	the	condition	are	essential	and
must	be	taken	into	account.	In	practical	problems	we	have	a	multitude	of	data	and	conditions;	we	take	into
account	as	many	as	we	can	but	we	are	obliged	to	neglect	some.	Take	the	case	of	the	designer	of	a	large
dam.	 He	 considers	 the	 public	 interest	 and	 important	 economic	 interests	 but	 he	 is	 bound	 to	 disregard
certain	 petty	 claims	 and	 grievances.	 The	 data	 of	 his	 problem	 are,	 strictly	 speaking,	 inexhaustible.	 For
instance,	 he	 would	 like	 to	 know	 a	 little	 more	 about	 the	 geologic	 nature	 of	 the	 ground	 on	 which	 the
foundations	must	be	laid,	but	eventually	he	must	stop	collecting	geologic	data	although	a	certain	margin	of
uncertainty	unavoidably	remains.
Did	you	use	all	the	data?	Did	you	use	the	whole	condition?	We	cannot	miss	these	questions	when	we

deal	with	purely	mathematical	problems.	In	practical	problems,	however,	we	should	put	these	questions
in	a	modified	form:	Did	you	use	all	the	data	which	could	contribute	appreciably	to	the	solution?	Did	you
use	 all	 the	 conditions	which	could	 influence	appreciably	 the	 solution?	We	 take	 stock	 of	 the	 available
relevant	 information,	we	collect	more	 information	 if	necessary,	but	eventually	we	must	 stop	collecting,
we	must	draw	the	line	somewhere,	we	cannot	help	neglecting	something.	“If	you	will	sail	without	danger,
you	 must	 never	 put	 to	 sea.”	 Quite	 often,	 there	 is	 a	 great	 surplus	 of	 data	 which	 have	 no	 appreciable
influence	on	the	final	form	of	the	solution.

4.	The	designers	of	the	ancient	Egyptian	dams	had	to	rely	on	the	common-sense	interpretation	of	their
experience,	 they	had	nothing	else	 to	 rely	on.	The	modern	engineer	cannot	 rely	on	common	sense	alone,
especially	if	his	project	is	of	a	new	and	daring	design;	he	has	to	calculate	the	resistance	of	the	projected
dam,	foresee	quantitatively	the	strain	and	stress	in	its	interior.	For	this	purpose,	he	has	to	apply	the	theory
of	elasticity	(which	applies	fairly	well	to	constructions	in	concrete).	To	apply	this	theory,	he	needs	a	good
deal	of	mathematics;	the	practical	engineering	problem	leads	to	a	mathematical	problem.

This	mathematical	problem	is	too	technical	to	be	discussed	here;	all	we	can	say	about	it	is	a	general
remark.	In	setting	up	and	in	solving	mathematical	problems	derived	from	practical	problems,	we	usually
content	ourselves	with	an	approximation.	We	are	bound	to	neglect	some	minor	data	and	conditions	of	the
practical	 problem.	 Therefore	 it	 is	 reasonable	 to	 allow	 some	 slight	 inaccuracy	 in	 the	 computations
especially	when	we	can	gain	in	simplicity	what	we	lose	in	accuracy.

5.	Much	could	be	said	about	approximations	that	would	deserve	general	interest.	We	cannot	suppose,
however,	any	specialized	mathematical	knowledge	and	therefore	we	restrict	ourselves	to	just	one	intuitive
and	instructive	example.

The	drawing	of	geographic	maps	is	an	important	practical	problem.	Devising	a	map,	we	often	assume
that	the	earth	is	a	sphere.	Now	this	is	only	an	approximate	assumption	and	not	the	exact	truth.	The	surface
of	the	earth	is	not	at	all	a	mathematically	defined	surface	and	we	definitely	know	that	the	earth	is	flattened
at	the	poles.	Assuming,	however,	that	the	earth	is	a	sphere,	we	may	draw	a	map	of	it	much	more	easily.
We	gain	much	in	simplicity	and	do	not	lose	a	great	deal	in	accuracy.	In	fact,	let	us	imagine	a	big	ball	that
has	exactly	the	shape	of	the	earth	and	that	has	a	diameter	of	25	feet	at	its	equator.	The	distance	between



the	poles	of	such	a	ball	 is	 less	 than	25	feet	because	the	earth	is	flattened,	but	only	about	one	inch	less.
Thus	the	sphere	yields	a	good	practical	approximation.



Problems	to	find,	problems	to	prove.	We	draw	a	parallel	between	these	two	kinds	of	problems.
1.	The	aim	of	a	“problem	to	find”	is	to	find	a	certain	object,	the	unknown	of	the	problem.
The	unknown	is	also	called	“quaesitum,”	or	the	thing	sought,	or	the	thing	required.	“Problems	to	find”

may	be	theoretical	or	practical,	abstract	or	concrete,	serious	problems	or	mere	puzzles.	We	may	seek	all
sorts	of	unknowns;	we	may	 try	 to	 find,	 to	obtain,	 to	acquire,	 to	produce,	or	 to	construct	all	 imaginable
kinds	of	objects.	In	the	problem	of	the	mystery	story	the	unknown	is	a	murderer.	In	a	chess	problem	the
unknown	 is	 a	move	 of	 the	 chessmen.	 In	 certain	 riddles	 the	 unknown	 is	 a	 word.	 In	 certain	 elementary
problems	of	algebra	the	unknown	is	a	number.	In	a	problem	of	geometric	construction	the	unknown	is	a
figure.

2.	The	aim	of	a	“problem	to	prove”	 is	to	show	conclusively	that	a	certain	clearly	stated	assertion	is
true,	or	else	to	show	that	it	is	false.	We	have	to	answer	the	question:	Is	this	assertion	true	or	false?	And
we	have	to	answer	conclusively,	either	by	proving	the	assertion	true,	or	by	proving	it	false.

A	witness	affirms	that	the	defendant	stayed	at	home	a	certain	night.	The	judge	has	to	find	out	whether
this	assertion	 is	 true	or	not	 and,	moreover,	he	has	 to	give	as	good	grounds	as	possible	 for	his	 finding.
Thus,	 the	 judge	 has	 a	 “problem	 to	 prove.”	 Another	 “problem	 to	 prove”	 is	 to	 “prove	 the	 theorem	 of
Pythagoras.”	We	do	not	say:	“Prove	or	disprove	the	theorem	of	Pythagoras.”	It	would	be	better	in	some
respects	 to	 include	in	 the	statement	of	 the	problem	the	possibility	of	disproving,	but	we	may	neglect	 it,
because	we	know	that	the	chances	for	disproving	the	theorem	of	Pythagoras	are	rather	slight.

3.	The	principal	parts	of	a	“problem	to	find”	are	the	unknown,	the	data,	and	the	condition.
If	we	have	to	construct	a	triangle	with	sides	a,	b,	c,	 the	unknown	is	a	triangle,	the	data	are	the	three

lengths	a,	b,	c,	and	the	triangle	is	required	to	satisfy	the	condition	that	its	sides	have	the	given	lengths	a,	b,
c.	 If	we	have	 to	construct	 a	 triangle	whose	altitudes	are	a,	b,	c,	 the	 unknown	 is	 an	object	 of	 the	 same
category	as	before,	the	data	are	the	same,	but	the	condition	linking	the	unknown	to	the	data	is	different.

4.	 If	 a	 “problem	 to	 prove”	 is	 a	mathematical	 problem	 of	 the	 usual	 kind,	 its	 principal	 parts	 are	 the
hypothesis	and	the	conclusion	of	the	theorem	which	has	to	be	proved	or	disproved.

“If	the	four	sides	of	a	quadrilateral	are	equal,	then	the	two	diagonals	are	perpendicular	to	each	other.”
The	second	part	starting	with	“then”	is	the	conclusion,	the	first	part	starting	with	“if”	is	the	hypothesis.

[Not	 all	 mathematical	 theorems	 can	 be	 split	 naturally	 into	 hypothesis	 and	 conclusion.	 Thus,	 it	 is
scarcely	possible	to	split	so	the	theorem:	“There	are	an	infinity	of	prime	numbers.”]

5.	If	you	wish	to	solve	a	“problem	to	find”	you	must	know,	and	know	very	exactly,	its	principal	parts,
the	unknown,	the	data,	and	the	condition.	Our	list	contains	many	questions	and	suggestions	concerned	with
these	parts.
What	is	the	unknown?	What	are	the	data?	What	is	the	condition?
Separate	the	various	parts	of	the	condition.
Find	the	connection	between	the	data	and	the	unknown.
Look	at	the	unknown!	And	try	to	think	of	a	familiar	problem	having	the	same	or	a	similar	unknown.
Keep	only	a	part	of	the	condition,	drop	the	other	part;	how	far	is	the	unknown	then	determined,	how

can	 it	 vary?	 Could	 you	 derive	 something	 useful	 from	 the	 data?	 Could	 you	 think	 of	 other	 data
appropriate	 to	 determine	 the	 unknown?	 Could	 you	 change	 the	 unknown,	 or	 the	 data,	 or	 both	 if
necessary,	so	that	the	new	unknown	and	the	new	data	are	nearer	to	each	other?
Did	you	use	all	the	data?	Did	you	use	the	whole	condition?
6.	If	you	wish	to	solve	a	“problem	to	prove”	you	must	know,	and	know	very	exactly,	its	principal	parts,

the	 hypothesis,	 and	 the	 conclusion.	 There	 are	 useful	 questions	 and	 suggestions	 concerning	 these	 parts
which	correspond	to	those	questions	and	suggestions	of	our	list	which	are	specially	adapted	to	“problems
to	find.”
What	is	the	hypothesis?	What	is	the	conclusion?



Separate	the	various	parts	of	the	hypothesis.
Find	the	connection	between	the	hypothesis	and	the	conclusion.
Look	 at	 the	 conclusion!	 And	 try	 to	 think	 of	 a	 familiar	 theorem	 having	 the	 same	 or	 a	 similar

conclusion.
Keep	only	a	part	 of	 the	hypothesis,	 drop	 the	other	part;	 is	 the	 conclusion	 still	 valid?	Could	 you

derive	something	useful	 from	the	hypothesis?	Could	you	 think	of	another	hypothesis	 from	which	you
could	 easily	 derive	 the	 conclusion?	Could	 you	 change	 the	 hypothesis,	 or	 the	 conclusion,	 or	 both	 if
necessary,	so	that	the	new	hypothesis	and	the	new	conclusion	are	nearer	to	each	other?
Did	you	use	the	whole	hypothesis?
7.	 “Problems	 to	 find”	 are	 more	 important	 in	 elementary	 mathematics,	 “problems	 to	 prove”	 more

important	in	advanced	mathematics.	In	the	present	book,	“problems	to	find”	are	more	emphasized	than	the
other	kind,	but	the	author	hopes	to	reestablish	the	balance	in	a	fuller	treatment	of	the	subject.

Progress	and	achievement.	Have	you	made	any	progress?	What	was	the	essential	achievement?	We
may	address	questions	of	 this	kind	 to	ourselves	when	we	are	 solving	a	problem	or	 to	a	 student	whose
work	we	supervise.	Thus,	we	are	used	to	 judge,	more	or	 less	confidently,	progress	and	achievement	 in
concrete	cases.	The	step	from	such	concrete	cases	to	a	general	description	is	not	easy	at	all.	Yet	we	have
to	undertake	this	step	if	we	wish	to	make	our	study	of	heuristic	somewhat	complete	and	we	must	 try	to
clarify	what	constitutes,	in	general,	progress	and	achievement	in	solving	problems.

1.	In	order	to	solve	a	problem,	we	must	have	some	knowledge	of	the	subject-matter	and	we	must	select
and	collect	the	relevant	items	of	our	existing	but	initially	dormant	knowledge.	There	is	much	more	in	our
conception	of	 the	problem	at	 the	end	 than	was	 in	 it	at	 the	outset;	what	has	been	added?	What	we	have
succeeded	 in	 extracting	 from	 our	 memory.	 In	 order	 to	 obtain	 the	 solution	 we	 have	 to	 recall	 various
essential	 facts.	 We	 have	 to	 recollect	 formerly	 solved	 problems,	 known	 theorems,	 definitions,	 if	 our
problem	 is	 mathematical.	 Extracting	 such	 relevant	 elements	 from	 our	 memory	 may	 be	 termed
mobilization.

2.	In	order	to	solve	a	problem,	however,	it	is	not	enough	to	recollect	isolated	facts,	we	must	combine
these	 facts,	 and	 their	 combination	 must	 be	 well	 adapted	 to	 the	 problem	 at	 hand.	 Thus,	 in	 solving	 a
mathematical	problem,	we	have	to	construct	an	argument	connecting	the	materials	recollected	to	a	well
adapted	whole.	This	adapting	and	combining	activity	may	be	termed	organization.

3.	In	fact,	mobilization	and	organization	can	never	be	really	separated.	Working	at	 the	problem	with
concentration,	we	 recall	 only	 facts	which	 are	more	 or	 less	 connected	with	 our	 purpose,	 and	we	 have
nothing	to	connect	and	organize	but	materials	we	have	recollected	and	mobilized.

Mobilization	and	organization	are	but	two	aspects	of	the	same	complex	process	which	has	still	many
other	aspects.

4.	Another	aspect	of	the	progress	of	our	work	is	that	our	mode	of	conception	changes.	Enriched	with
all	the	materials	which	we	have	recalled,	adapted	to	it,	and	worked	into	it,	our	conception	of	the	problem
is	much	fuller	at	the	end	than	it	was	at	the	outset.	Desiring	to	proceed	from	our	initial	conception	of	the
problem	to	a	more	adequate,	better	adapted	conception,	we	try	various	standpoints	and	view	the	problem
from	different	sides.	We	could	make	hardly	any	progress	without	VARIATION	OF	THE	PROBLEM.

5.	As	we	progress	toward	our	final	goal	we	see	more	and	more	of	it,	and	when	we	see	it	better	we
judge	that	we	are	nearer	to	it.	As	our	examination	of	the	problem	advances,	we	foresee	more	and	more
clearly	what	should	be	done	for	the	solution	and	how	it	should	be	done.	Solving	a	mathematical	problem
we	may	foresee,	if	we	are	lucky,	that	a	certain	known	theorem	might	be	used,	that	the	consideration	of	a
certain	 formerly	solved	problem	might	be	helpful,	 that	going	back	 to	 the	meaning	of	a	certain	 technical
term	might	 be	 necessary.	We	 do	 not	 foresee	 such	 things	 with	 certainty,	 only	 with	 a	 certain	 degree	 of



plausibility.	We	shall	attain	complete	certainty	when	we	have	obtained	the	complete	solution,	but	before
obtaining	certainty	we	must	often	be	satisfied	with	a	more	or	less	plausible	guess.	Without	considerations
which	are	only	plausible	and	provisional,	we	could	never	find	the	solution	which	is	certain	and	final.	We
need	HEURISTIC	REASONING.

6.	What	is	progress	toward	the	solution?	Advancing	mobilization	and	organization	of	our	knowledge,
evolution	of	our	 conception	of	 the	problem,	 increasing	prevision	of	 the	 steps	which	will	 constitute	 the
final	 argument.	We	may	 advance	 steadily,	 by	 small	 imperceptible	 steps,	 but	 now	and	 then	we	 advance
abruptly,	 by	 leaps	 and	bounds.	A	 sudden	advance	 toward	 the	 solution	 is	 called	 a	BRIGHT	 IDEA,	 a	 good
idea,	a	happy	thought,	a	brain-wave	(in	German	there	is	a	more	technical	term,	Einfall).	What	is	a	bright
idea?	An	abrupt	and	momentous	change	of	our	outlook,	a	sudden	reorganization	of	our	mode	of	conceiving
the	 problem,	 a	 just	 emerging	 confident	 prevision	 of	 the	 steps	 we	 have	 to	 take	 in	 order	 to	 attain	 the
solution.

7.	The	foregoing	considerations	provide	the	questions	and	suggestions	of	our	list	with	the	right	sort	of
background.

Many	 of	 these	 questions	 and	 suggestions	 aim	 directly	 at	 the	mobilization	 of	 our	 formerly	 acquired
knowledge:	Have	you	seen	it	before?	Or	have	you	seen	the	same	problem	in	a	slightly	different	form?
Do	you	know	a	related	problem?	Do	you	know	a	theorem	that	could	be	useful?	Look	at	the	unknown!
And	try	to	think	of	a	familiar	problem	having	the	same	or	a	similar	unknown.

There	are	typical	situations	in	which	we	think	that	we	have	collected	the	right	sort	of	material	and	we
work	 for	 a	 better	organization	 of	what	we	 have	mobilized:	Here	 is	 a	 problem	 related	 to	 yours	 and
solved	 before.	 Could	 you	 use	 it?	 Could	 you	 use	 its	 result?	 Could	 you	 use	 its	 method?	 Should	 you
introduce	some	auxiliary	element	in	order	to	make	its	use	possible?

There	are	other	typical	situations	in	which	we	think	that	we	have	not	yet	collected	enough	material.	We
wonder	what	is	missing:	Did	you	use	all	the	data?	Did	you	use	the	whole	condition?	Have	you	taken
into	account	all	essential	notions	involved	in	the	problem?

Some	questions	aim	directly	at	the	variation	of	the	problem:	Could	you	restate	the	problem?	Could
you	restate	it	still	differently?	Many	questions	aim	at	the	variation	of	the	problem	by	specified	means,	as
going	 back	 to	 the	 DEFINITION,	 using	 ANALOGY,	 GENERALIZATION,	 SPECIALIZATION,	 DECOMPOSING	 AND
RECOMBINING.

Still	other	questions	suggest	a	trial	to	foresee	the	nature	of	the	solution	we	are	striving	to	obtain:	Is	it
possible	 to	 satisfy	 the	 condition?	 Is	 the	 condition	 sufficient	 to	 determine	 the	 unknown?	 Or	 is	 it
insufficient?	Or	redundant?	Or	contradictory?

The	questions	and	suggestions	of	our	list	do	not	mention	directly	the	bright	idea;	but,	 in	fact,	all	are
concerned	with	 it.	Understanding	 the	problem	we	prepare	 for	 it,	 devising	 a	plan	we	 try	 to	provoke	 it,
having	provoked	it	we	carry	it	through,	looking	back	at	the	course	and	the	result	of	the	solution	we	try	to
exploit	it	better.8

Puzzles.	 According	 to	 section	 3,	 the	 questions	 and	 suggestions	 of	 our	 list	 are	 independent	 of	 the
subject-matter	 and	 applicable	 to	 all	 kinds	 of	 problems.	 It	 is	 quite	 interesting	 to	 test	 this	 assertion	 on
various	puzzles.

Take,	for	instance,	the	words

DRY	OXTAIL	IN	REAR.
The	problem	is	to	find	an	“anagram,”	that	is,	a	rearrangement	of	the	letters	contained	in	the	given	words
into	one	word.	It	is	interesting	to	observe	that,	when	we	are	solving	this	puzzle,	several	questions	of	our



list	are	pertinent	and	even	stimulating.
What	is	the	unknown?	A	word.
What	are	the	data?	The	four	words	DRY	OXTAIL	IN	REAR.
What	 is	 the	 condition?	 The	 desired	word	 has	 fifteen	 letters,	 the	 letters	 contained	 in	 the	 four	 given

words.	It	is	probably	a	not	too	unusual	English	word.
Draw	a	figure.	It	is	quite	useful	to	mark	out	fifteen	blank	spaces:

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Could	you	restate	the	problem?	We	have	to	find	a	word	containing,	in	some	arrangement,	the	letters

AAEIIOY	DLNRRRTX.
This	 is	 certainly	 an	 equivalent	 restatement	 of	 the	 problem	 (see	 AUXILIARY	 PROBLEM,	 6).	 It	 may	 be	 an
advantageous	restatement.	Separating	the	vowels	from	the	consonants	(this	is	important,	the	alphabetical
order	 is	not)	we	see	another	aspect	of	 the	problem.	Thus,	we	see	now	that	 the	desired	word	has	seven
syllables	unless	it	has	some	diphthongs.
If	you	cannot	solve	the	proposed	problem,	try	to	solve	first	some	related	problem.	A	related	problem

is	to	form	words	with	some	of	the	given	letters.	We	can	certainly	form	short	words	of	this	kind.	Then	we
try	to	find	longer	and	longer	words.	The	more	letters	we	use	the	nearer	we	may	come	to	the	desired	word.
Could	you	solve	a	part	of	the	problem?	The	desired	word	is	so	long	that	it	must	have	distinct	parts.	It

is,	 probably,	 a	 compound	word,	 or	 it	 is	 derived	 from	 some	 other	word	 by	 adding	 some	 usual	 ending.
Which	usual	ending	could	it	be?

-	-	-	-	-	-	-	-	-	-	ATION
-	-	-	-	-	-	-	-	-	-	-	-	ELY

Keep	only	a	part	of	the	condition	and	drop	the	other	part.	We	may	try	to	think	of	a	long	word	with,
possibly,	as	many	as	seven	syllables	and	relatively	few	consonants,	containing	an	X	and	a	Y.

The	questions	and	suggestions	of	our	list	cannot	work	magic.	They	cannot	give	us	the	solution	of	all
possible	puzzles	without	any	effort	on	our	part.	 If	 the	 reader	wishes	 to	 find	 the	word,	he	must	keep	on
trying	 and	 thinking	 about	 it.	What	 the	 questions	 and	 suggestions	 of	 the	 list	 can	 do	 is	 to	 “keep	 the	 ball
rolling.”	When,	discouraged	by	lack	of	success,	we	are	inclined	to	drop	the	problem,	they	may	suggest	to
us	a	new	trial,	a	new	aspect,	a	new	variation	of	the	problem,	a	new	stimulus;	they	may	keep	us	thinking.

For	another	example	see	DECOMPOSING	AND	RECOMBINING,	8.

Reductio	ad	absurdum	and	indirect	proof	are	different	but	related	procedures.
Reductio	ad	absurdum	 shows	 the	 falsity	 of	 an	 assumption	by	deriving	 from	 it	 a	manifest	 absurdity.

“Reduction	to	an	absurdity”	 is	a	mathematical	procedure	but	it	has	some	resemblance	to	irony	which	is
the	favorite	procedure	of	the	satirist.	Irony	adopts,	to	all	appearance,	a	certain	opinion	and	stresses	it	and
overstresses	it	till	it	leads	to	a	manifest	absurdity.
Indirect	proof	establishes	the	truth	of	an	assertion	by	showing	the	falsity	of	the	opposite	assumption.

Thus,	 indirect	 proof	 has	 some	 resemblance	 to	 a	 politician’s	 trick	 of	 establishing	 a	 candidate	 by
demolishing	the	reputation	of	his	opponent.

Both	 “reductio	 ad	 absurdum”	 and	 indirect	 proof	 are	 effective	 tools	 of	 discovery	 which	 present
themselves	naturally	to	an	intent	mind.	Nevertheless,	 they	are	disliked	by	a	few	philosophers	and	many
beginners,	which	 is	understandable;	 satirical	people	and	 tricky	politicians	do	not	appeal	 to	everybody.
We	shall	first	illustrate	the	effectiveness	of	both	procedures	by	examples	and	discuss	objections	against



them	afterwards.
1.	Reductio	ad	absurdum.	Write	numbers	using	each	of	the	ten	digits	exactly	once	so	that	the	sum	of	the

numbers	is	exactly	100.
We	may	learn	something	by	trying	to	solve	this	puzzle	whose	statement	demands	some	elucidation.
What	is	the	unknown?	A	set	of	numbers;	and	by	numbers	we	mean	here,	of	course,	ordinary	integers.
What	is	given?	The	number	100.
What	is	the	condition?	The	condition	has	two	parts.	First,	writing	the	desired	set	of	numbers,	we	must

use	each	of	the	ten	digits,	0,	1,	2,	3,	4,	5,	6,	7,	8	and	9,	just	once.	Second,	the	sum	of	all	numbers	in	the	set
must	be	100.
Keep	only	a	part	of	the	condition,	drop	the	other	part.	The	first	part	alone	is	easy	to	satisfy.	Take	the

set	19,	28,	37,	46,	50;	each	figure	occurs	just	once.	But,	of	course,	the	second	part	of	the	condition	is	not
satisfied;	the	sum	of	these	numbers	is	180,	not	100.	We	could,	however,	do	better.	“Try,	try	again.”	Yes,

19	+	28	+	30	+	7	+	6	+	5	+	4	=	99.

The	first	part	of	the	condition	is	satisfied,	and	the	second	part	is	almost	satisfied;	we	have	99	instead	of
100.	Of	course,	we	can	easily	satisfy	the	second	part	if	we	drop	the	first:

19	+	28	+	31	+	7	+	6	+	5	+	4	=	100.

The	first	part	 is	not	satisfied:	 the	figure	1	occurs	 twice,	and	0	not	at	all;	 the	other	 figures	are	all	 right.
“Try,	try	again.”

After	a	few	unsuccessful	trials,	however,	we	may	be	led	to	suspect	that	it	is	not	possible	to	obtain	100
in	the	manner	required.	Eventually	the	problem	arises:	Prove	that	it	is	impossible	to	satisfy	both	parts	of
the	proposed	condition	at	the	same	time.

Quite	good	students	may	find	that	this	problem	is	above	their	heads.	Yet	the	answer	is	easy	enough	if
we	have	 the	 right	 attitude.	We	have	 to	 examine	 the	 hypothetical	 situation	 in	which	 both	 parts	 of	 the
condition	are	satisfied.

We	suspect	that	this	situation	cannot	actually	arise	and	our	suspicion,	based	on	the	experience	of	our
unsuccessful	 trials,	 has	 some	 foundation.	 Nevertheless,	 let	 us	 keep	 an	 open	 mind	 and	 let	 us	 face	 the
situation	in	which	hypothetically,	supposedly,	allegedly	both	parts	of	the	condition	are	satisfied.	Thus,	let
us	imagine	a	set	of	numbers	whose	sum	is	100.	They	must	be	numbers	with	one	or	two	figures.	There	are
ten	figures,	and	these	ten	figures	must	be	all	different,	since	each	of	the	figures,	0,	1,	2,	.	.	.	9	should	occur
just	once.	Thus,	the	sum	of	all	ten	figures	must	be

0	+	1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	=	45.

Some	of	these	figures	denote	units	and	others	tens.	It	takes	a	little	sagacity	to	hit	upon	the	idea	that	the	sum
of	the	figures	denoting	tens	may	be	of	some	importance.	In	fact,	let	t	stand	for	this	sum.	Then	the	sum	of
the	remaining	figures,	denoting	units,	is	45	−	t.	Therefore,	the	sum	of	all	numbers	in	the	set	must	be

10t	+	(45	−	t)	=	100.

We	have	here	an	equation	to	determine	t.	It	is	of	the	first	degree	and	gives

Now,	there	is	something	that	is	definitely	wrong.	The	value	of	t	that	we	have	found	is	not	an	integer	and	t
should	be,	of	course,	an	 integer.	Starting	from	the	supposition	 that	both	parts	of	 the	proposed	condition



can	be	simultaneously	satisfied,	we	have	been	led	to	a	manifest	absurdity.	How	can	we	explain	this?	Our
original	supposition	must	be	wrong;	both	parts	of	the	condition	cannot	be	satisfied	at	the	same	time.	And
so	we	have	attained	our	goal,	we	have	succeeded	in	proving	that	the	two	parts	of	the	proposed	condition
are	incompatible.

Our	reasoning	is	a	typical	“reductio	ad	absurdum.”
2.	Remarks.	Let	us	look	back	at	the	foregoing	reasoning	and	understand	its	general	trend.
We	wish	to	prove	that	it	is	impossible	to	fulfill	a	certain	condition,	that	is,	that	the	situation	in	which

all	parts	of	the	condition	are	simultaneously	satisfied	can	never	arise.	But,	if	we	have	proved	nothing	yet,
we	 have	 to	 face	 the	 possibility	 that	 the	 situation	 could	 arise.	Only	 by	 facing	 squarely	 the	 hypothetical
situation	and	examining	it	closely	can	we	hope	to	perceive	some	definitely	wrong	point	in	it.	And	we	must
lay	 our	 hand	 upon	 some	 definitely	 wrong	 point	 if	 we	 wish	 to	 show	 conclusively	 that	 the	 situation	 is
impossible.	Hence	we	 can	 see	 that	 the	 procedure	 that	was	 successful	 in	 our	 example	 is	 reasonable	 in
general:	We	have	 to	examine	 the	hypothetical	situation	 in	which	all	parts	of	 the	condition	are	satisfied,
although	such	a	situation	appears	extremely	unlikely.

The	more	experienced	reader	may	see	here	another	point.	The	main	step	of	our	procedure	consisted	in
setting	up	 an	 equation	 for	 t.	Now,	we	 could	 have	 arrived	 at	 the	 same	 equation	without	 suspecting	 that
something	 was	 wrong	 with	 the	 condition.	 If	 we	 wish	 to	 set	 up	 an	 equation,	 we	 have	 to	 express	 in
mathematical	language	that	all	parts	of	the	condition	are	satisfied,	although	we	do	not	know	yet	whether
it	is	actually	possible	to	satisfy	all	these	parts	simultaneously.

Our	procedure	 is	“open-minded.”	We	may	hope	 to	 find	 the	unknown	satisfying	 the	condition,	or	we
may	hope	to	show	that	the	condition	cannot	be	satisfied.	It	matters	little	in	one	respect:	the	investigation,	if
it	is	well	conducted,	starts	in	both	cases	in	the	same	way,	examining	the	hypothetical	situation	in	which
the	condition	is	fulfilled,	and	shows	only	in	its	later	course	which	hope	is	justified.

Compare	 FIGURES,	 2.	 Compare	 also	 PAPPUS;	 an	 analysis	 which	 ends	 in	 disproving	 the	 proposed
theorem,	or	 in	 showing	 that	 the	proposed	“problem	 to	 find”	 has	no	 solution,	 is	 actually	a	“reductio	ad
absurdum.”

3.	Indirect	proof.	The	prime	numbers,	or	primes,	are	the	numbers	2,	3,	5,	7,	11,	13,	17,	19,	23,	29,	31,
37,	.	.	.	which	cannot	be	resolved	into	smaller	factors,	although	they	are	greater	than	1.	(The	last	clause
excludes	the	number	1	which,	obviously,	cannot	be	resolved	into	smaller	factors,	but	has	a	different	nature
and	 should	not	be	 counted	as	 a	prime.)	The	primes	are	 the	“ultimate	 elements”	 into	which	all	 integers
(greater	than	1)	can	be	decomposed.	For	instance,

630	=	2	·	3	·	3	·	5	·	7

is	decomposed	into	a	product	of	five	primes.
Is	 the	 series	 of	 primes	 infinite	 or	 does	 it	 end	 somewhere?	 It	 is	 natural	 to	 suspect	 that	 the	 series	 of

primes	 never	 ends.	 If	 it	 ended	 somewhere,	 all	 integers	 could	 be	 decomposed	 into	 a	 finite	 number	 of
ultimate	 elements	 and	 the	 world	 would	 appear	 “too	 poor”	 in	 a	 manner	 of	 speaking.	 Thus	 arises	 the
problem	of	proving	the	existence	of	an	infinity	of	prime	numbers.

This	problem	is	very	different	from	elementary	mathematical	problems	of	the	usual	kind	and	appears	at
first	inaccessible.	Yet,	as	we	said,	it	is	extremely	unlikely	that	there	should	be	a	last	prime,	say	P.	Why	is
it	so	unlikely?

Let	us	 face	 squarely	 the	unlikely	 situation	 in	which,	hypothetically,	 supposedly,	 allegedly,	 there	 is	 a
last	prime	P.	Then	we	could	write	down	the	complete	series	of	primes	2,	3,	5,	7,	11,	.	.	.	P.	Why	is	this	so
unlikely?	What	is	wrong	with	it?	Can	we	point	out	anything	that	is	definitely	wrong?	Indeed,	we	can.	We
can	construct	the	number

Q	=	(2	·	3	·	5	·	7	·	11	.	.	.	P)	+	1.



This	number	Q	is	greater	than	P	and	therefore,	allegedly,	Q	cannot	be	a	prime.	Consequently,	Q	must	be
divisible	by	a	prime.	Now,	all	primes	at	our	disposal	are,	supposedly,	the	numbers	2,	3,	5,	.	.	.	P	but	Q,
divided	 by	 any	 of	 these	 numbers,	 leaves	 the	 rest	 1;	 and	 so	Q	 is	 not	 divisible	 by	 any	 of	 the	 primes
mentioned	which	are,	hypothetically,	all	the	primes.	Now,	there	is	something	that	is	definitely	wrong;	Q
must	be	either	a	prime	or	it	must	be	divisible	by	some	prime.	Starting	from	the	supposition	that	there	is	a
last	prime	P	we	have	been	led	to	a	manifest	absurdity.	How	can	we	explain	this?	Our	original	supposition
must	be	wrong;	there	cannot	be	a	last	prime	P.	And	so	we	have	succeeded	in	proving	that	the	series	of
prime	numbers	never	ends.

Our	proof	is	a	 typical	 indirect	proof.	(It	 is	a	famous	proof	too,	due	to	Euclid;	see	Proposition	20	of
Book	IX	of	the	Elements.)

We	have	established	our	theorem	(that	the	series	of	primes	never	ends)	by	disproving	its	contradictory
opposite	 (that	 the	 series	 of	 primes	 ends	 somewhere)	which	we	 have	 disproved	 by	 deducing	 from	 it	 a
manifest	absurdity.	Thus	we	have	combined	indirect	proof	with	“reductio	ad	absurdum”;	this	combination
is	also	very	typical.

4.	Objections.	 The	 procedures	 which	 we	 are	 studying	 encountered	 considerable	 opposition.	 Many
objections	have	been	raised	which	are,	possibly,	only	various	forms	of	the	same	fundamental	objection.
We	discuss	here	a	“practical”	form	of	the	objection,	which	is	on	our	level.

To	 find	a	not	obvious	proof	 is	a	considerable	 intellectual	achievement	but	 to	 learn	such	a	proof,	or
even	to	understand	it	thoroughly	costs	also	a	certain	amount	of	mental	effort.	Naturally	enough,	we	wish	to
retain	 some	 benefit	 from	our	 effort,	 and,	 of	 course,	what	we	 retain	 in	 our	memory	 should	 be	 true	 and
correct	and	not	false	or	absurd.

But	 it	 seems	difficult	 to	 retain	 something	 true	 from	a	“reductio	 ad	 absurdum.”	The	procedure	 starts
from	a	false	assumption	and	derives	from	it	consequences	which	are	equally,	but	perhaps	more	visibly,
false	till	it	reaches	a	last	consequence	which	is	manifestly	false.	If	we	do	not	wish	to	store	falsehoods	in
our	memory	we	should	forget	everything	as	quickly	as	possible	which	is,	however,	not	feasible	because
all	points	must	be	remembered	sharply	and	correctly	during	our	study	of	the	proof.

The	 objection	 to	 indirect	 proofs	 can	 be	 now	 stated	 very	 briefly.	 Listening	 to	 such	 a	 proof,	we	 are
obliged	to	focus	our	attention	all	the	time	upon	a	false	assumption	which	we	should	forget	and	not	upon
the	true	theorem	which	we	should	retain.

If	we	wish	to	judge	correctly	of	the	merits	of	these	objections,	we	should	distinguish	between	two	uses
of	 the	“reductio	ad	absurdum,”	 as	a	 tool	of	 research	and	as	a	means	of	exposition,	and	make	 the	same
distinction	concerning	the	indirect	proof.

It	must	be	confessed	that	“reductio	ad	absurdum”	as	a	means	of	exposition	is	not	an	unmixed	blessing.
Such	a	“reductio,”	especially	if	it	is	long,	may	become	very	painful	indeed	for	the	reader	or	listener.	All
the	derivations	which	we	examine	in	succession	are	correct	but	all	the	situations	which	we	have	to	face
are	impossible.	Even	the	verbal	expression	may	become	tedious	if	it	insists,	as	it	should,	on	emphasizing
that	everything	is	based	on	an	initial	assumption;	the	words	“hypothetically,”	“supposedly,”	“allegedly”
must	recur	incessantly,	or	some	other	device	must	be	applied	continually.	We	wish	to	reject	and	forget	the
situation	as	impossible	but	we	have	to	retain	and	examine	it	as	the	basis	for	the	next	step,	and	this	inner
discord	may	become	unbearable	in	the	long	run.

Yet	 it	would	 be	 foolish	 to	 repudiate	“reductio	 ad	 absurdum”	 as	 a	 tool	 of	 discovery.	 It	may	present
itself	naturally	and	bring	a	decision	when	all	other	means	seem	to	be	exhausted	as	the	foregoing	examples
may	show.

We	 need	 some	 experience	 to	 perceive	 that	 there	 is	 no	 essential	 opposition	 between	 our	 two
contentions.	Experience	shows	that	usually	there	is	little	difficulty	in	converting	an	indirect	proof	into	a
direct	proof,	or	in	rearranging	a	proof	found	by	a	long	“reductio	ad	absurdum”	into	a	more	pleasant	form



from	which	the	“reductio	ad	absurdum”	may	even	completely	disappear	(or,	after	due	preparation,	it	may
be	compressed	into	a	few	striking	sentences).

In	short,	if	we	wish	to	make	full	use	of	our	capacities,	we	should	be	familiar	both	with	“reductio	ad
absurdum”	and	with	indirect	proof.	When,	however,	we	have	succeeded	in	deriving	a	result	by	either	of
these	 methods	 we	 should	 not	 fail	 to	 look	 back	 at	 the	 solution	 and	 ask:	 Can	 you	 derive	 the	 result
differently?

Let	us	illustrate	by	examples	what	we	have	said.
5.	 Rearranging	 a	 reductio	 ad	 absurdum.	 We	 look	 back	 at	 the	 reasoning	 presented	 under	 1.	 The

reductio	 ad	 absurdum	 started	 from	 a	 situation	 which,	 eventually,	 turned	 out	 to	 be	 impossible.	 Let	 us
however	carve	out	a	part	of	the	argument	which	is	independent	of	the	initial	false	assumption	and	contains
positive	 information.	Reconsidering	what	we	 have	 done,	we	may	 perceive	 that	 this	much	 is	 doubtless
true:	If	a	set	of	numbers	with	one	or	two	digits	is	written	so	that	each	of	the	ten	figures	occurs	just	once,
then	the	sum	of	the	set	is	of	the	form

10t	+	(45	−	t)	=	9	(t	+	5).

Thus,	this	sum	is	divisible	by	9.	The	proposed	puzzle	demands	however	that	this	sum	should	be	100.	Is
this	possible?	No,	it	is	not,	since	100	is	not	divisible	by	9.

The	 “reductio	 ad	 absurdum”	 which	 led	 to	 the	 discovery	 of	 the	 argument	 vanished	 from	 our	 new
presentation.

By	 the	way,	 a	 reader	 acquainted	with	 the	 procedure	 of	 “casting	 out	 nines”	 can	 see	 now	 the	whole
argument	at	a	glance.

6.	Converting	 an	 indirect	 proof.	We	 look	 back	 at	 the	 reasoning	 presented	 under	 3.	 Reconsidering
carefully	what	we	have	done,	we	may	find	elements	of	the	argument	which	are	independent	of	any	false
assumption,	yet	the	best	clue	comes	from	a	reconsideration	of	the	meaning	of	the	original	problem	itself.

What	do	we	mean	by	saying	that	the	series	of	primes	never	ends?	Evidently,	just	this:	when	we	have
ascertained	any	finite	set	of	primes	as	2,	3,	5,	7,	11,	.	.	.	P,	where	P	is	the	last	prime	hitherto	found,	there
is	always	one	more	prime.	Thus,	what	must	we	do	 to	prove	 the	existence	of	an	 infinity	of	primes?	We
have	to	point	out	a	way	of	finding	a	prime	different	from	all	primes	hitherto	found.	Thus,	our	“problem	to
prove”	is	in	fact	reduced	to	a	“problem	to	find”:	Being	given	the	primes	2,	3,	5,	.	.	.	P,	find	a	new	prime
N	different	from	all	the	given	primes.

Having	restated	our	original	problem	in	 this	new	form,	we	have	 taken	 the	main	step.	 It	 is	 relatively
easy	now	to	see	how	to	use	the	essential	parts	of	our	former	argument	for	the	new	purpose.	In	fact,	 the
number

Q	=	(2	·	3	·	5	·	7	·	11	.	.	.	P)	+	1

is	certainly	divisible	by	a	prime.	Let	us	take—this	is	the	idea—any	prime	divisor	of	Q	(for	instance,	the
smallest	one)	for	N.	(Of	course,	if	Q	happens	to	be	a	prime,	then	N	=	Q.)	Obviously,	Q	divided	by	any	of
the	primes	2,	3,	5,	.	.	.	P	leaves	the	remainder	1	and,	therefore,	none	of	these	numbers	can	be	N	which	is	a
divisor	of	Q.	But	that	is	all	we	need:	N	is	a	prime,	and	different	from	all	hitherto	found	primes	2,	3,	5,	7,
11,	.	.	.	P.

This	proof	gives	a	definite	procedure	of	prolonging	again	and	again	the	series	of	primes,	without	limit.
Nothing	is	indirect	in	it,	no	impossible	situation	needs	to	be	considered.	Yet,	fundamentally,	it	is	the	same
as	our	former	indirect	proof	which	we	have	succeeded	in	converting.

Redundant.	See	CONDITION.



Routine	problem	may	be	called	the	problem	to	solve	the	equation	x2	−	3x	+	2	=	0	if	the	solution	of	the
general	quadratic	equation	was	explained	and	illustrated	before	so	that	the	student	has	nothing	to	do	but	to
substitute	 the	 numbers	 −3	 and	 2	 for	 certain	 letters	 which	 appear	 in	 the	 general	 solution.	 Even	 if	 the
quadratic	equation	was	not	solved	generally	in	“letters”	but	half	a	dozen	similar	quadratic	equations	with
numerical	 coefficients	were	 solved	 just	 before,	 the	 problem	 should	 be	 called	 a	 “routine	 problem.”	 In
general,	 a	problem	 is	 a	“routine	problem”	 if	 it	 can	be	 solved	either	by	 substituting	 special	data	 into	 a
formerly	 solved	 general	 problem,	 or	 by	 following	 step	 by	 step,	without	 any	 trace	 of	 originality,	 some
well-worn	 conspicuous	 example.	 Setting	 a	 routine	 problem,	 the	 teacher	 thrusts	 under	 the	 nose	 of	 the
student	an	 immediate	and	decisive	answer	 to	 the	question:	Do	you	know	a	related	problem?	Thus,	 the
student	needs	nothing	but	a	 little	care	and	patience	 in	following	a	cut-and-dried	precept,	and	he	has	no
opportunity	to	use	his	judgment	or	his	inventive	faculties.

Routine	problems,	even	many	routine	problems,	may	be	necessary	in	teaching	mathematics	but	to	make
the	 students	 do	 no	 other	 kind	 is	 inexcusable.	 Teaching	 the	 mechanical	 performance	 of	 routine
mathematical	operations	and	nothing	else	is	well	under	the	level	of	the	cookbook	because	kitchen	recipes
do	leave	something	to	the	imagination	and	judgment	of	the	cook	but	mathematical	recipes	do	not.

Rules	of	discovery.	The	first	 rule	of	discovery	 is	 to	have	brains	and	good	 luck.	The	second	rule	of
discovery	is	to	sit	tight	and	wait	till	you	get	a	bright	idea.

It	may	be	good	to	be	reminded	somewhat	rudely	that	certain	aspirations	are	hopeless.	Infallible	rules
of	discovery	leading	to	the	solution	of	all	possible	mathematical	problems	would	be	more	desirable	than
the	philosophers’	 stone,	vainly	sought	by	 the	alchemists.	Such	rules	would	work	magic;	but	 there	 is	no
such	 thing	as	magic.	To	find	unfailing	 rules	applicable	 to	all	 sorts	of	problems	 is	an	old	philosophical
dream;	but	this	dream	will	never	be	more	than	a	dream.

A	reasonable	sort	of	heuristic	cannot	aim	at	unfailing	rules;	but	it	may	endeavor	to	study	procedures
(mental	operations,	moves,	 steps)	which	are	 typically	useful	 in	 solving	problems.	Such	procedures	are
practiced	 by	 every	 sane	 person	 sufficiently	 interested	 in	 his	 problem.	 They	 are	 hinted	 by	 certain
stereotyped	questions	and	suggestions	which	intelligent	people	put	to	themselves	and	intelligent	teachers
to	 their	 students.	 A	 collection	 of	 such	 questions	 and	 suggestions,	 stated	 with	 sufficient	 generality	 and
neatly	ordered,	may	be	less	desirable	than	the	philosophers’	stone	but	can	be	provided.	The	list	we	study
provides	such	a	collection.

Rules	of	style.	The	first	rule	of	style	is	to	have	something	to	say.	The	second	rule	of	style	is	to	control
yourself	when,	by	chance,	you	have	two	things	to	say;	say	first	one,	 then	the	other,	not	both	at	 the	same
time.

Rules	of	teaching.	The	first	rule	of	teaching	is	to	know	what	you	are	supposed	to	teach.	The	second
rule	of	teaching	is	to	know	a	little	more	than	what	you	are	supposed	to	teach.

First	things	come	first.	The	author	of	this	book	does	not	think	that	all	rules	of	conduct	for	teachers	are
completely	 useless;	 otherwise,	 he	 would	 not	 have	 dared	 to	 write	 a	 whole	 book	 about	 the	 conduct	 of
teachers	 and	 students.	 Yet	 it	 should	 not	 be	 forgotten	 that	 a	 teacher	 of	mathematics	 should	 know	 some
mathematics,	 and	 that	 a	 teacher	 wishing	 to	 impart	 the	 right	 attitude	 of	 mind	 toward	 problems	 to	 his
students	should	have	acquired	that	attitude	himself.

Separate	 the	 various	 parts	 of	 the	 condition.	 Our	 first	 duty	 is	 to	 understand	 the	 problem.	Having
understood	the	problem	as	a	whole,	we	go	into	detail.	We	consider	its	principal	parts,	the	unknown,	the
data,	the	condition,	each	by	itself.	When	we	have	these	parts	well	in	mind	but	no	particularly	helpful	idea
has	 yet	 occurred	 to	 us,	 we	 go	 into	 further	 detail.	We	 consider	 the	 various	 data,	 each	 datum	 by	 itself.



Having	understood	the	condition	as	a	whole,	we	separate	its	various	parts,	and	we	consider	each	part	by
itself.

We	see	now	the	role	of	the	suggestion	that	we	have	to	discuss	here.	It	tends	to	provoke	a	step	that	we
have	to	take	when	we	are	trying	to	see	the	problem	distinctly	and	have	to	go	into	finer	and	finer	detail.	It
is	a	step	in	DECOMPOSING	AND	RECOMBINING.
Separate	the	various	parts	of	the	condition.	Can	you	write	them	down?	We	often	have	opportunity	to

ask	this	question	when	we	are	SETTING	UP	EQUATIONS.

Setting	 up	 equations	 is	 like	 translation	 from	 one	 language	 into	 another	 (NOTATION,	 1).	 This
comparison,	 used	 by	Newton	 in	 his	Arithmetica	Universalis,	may	 help	 to	 clarify	 the	 nature	 of	 certain
difficulties	often	felt	both	by	students	and	by	teachers.

1.	To	set	up	equations	means	to	express	in	mathematical	symbols	a	condition	that	is	stated	in	words;	it
is	translation	from	ordinary	language	into	the	language	of	mathematical	formulas.	The	difficulties	which
we	may	have	in	setting	up	equations	are	difficulties	of	translation.

In	 order	 to	 translate	 a	 sentence	 from	 English	 into	 French	 two	 things	 are	 necessary.	 First,	 we	must
understand	 thoroughly	 the	English	 sentence.	Second,	we	must	 be	 familiar	with	 the	 forms	of	 expression
peculiar	to	the	French	language.	The	situation	is	very	similar	when	we	attempt	to	express	in	mathematical
symbols	a	condition	proposed	in	words.	First,	we	must	understand	thoroughly	the	condition.	Second,	we
must	be	familiar	with	the	forms	of	mathematical	expression.

An	English	sentence	is	relatively	easy	to	translate	into	French	if	 it	can	be	translated	word	for	word.
But	 there	 are	 English	 idioms	 which	 cannot	 be	 translated	 into	 French	 word	 for	 word.	 If	 our	 sentence
contains	 such	 idioms,	 the	 translation	 becomes	 difficult;	 we	 have	 to	 pay	 less	 attention	 to	 the	 separate
words,	 and	 more	 attention	 to	 the	 whole	 meaning;	 before	 translating	 the	 sentence,	 we	 may	 have	 to
rearrange	it.

It	 is	 very	 much	 the	 same	 in	 setting	 up	 equations.	 In	 easy	 cases,	 the	 verbal	 statement	 splits	 almost
automatically	 into	 successive	 parts,	 each	 of	 which	 can	 be	 immediately	 written	 down	 in	 mathematical
symbols.	 In	more	 difficult	 cases,	 the	 condition	 has	 parts	 which	 cannot	 be	 immediately	 translated	 into
mathematical	 symbols.	 If	 this	 is	 so,	we	must	pay	 less	attention	 to	 the	verbal	 statement,	and	concentrate
more	upon	the	meaning.	Before	we	start	writing	formulas,	we	may	have	to	rearrange	the	condition,	and	we
should	keep	an	eye	on	the	resources	of	mathematical	notation	while	doing	so.

In	all	cases,	easy	or	difficult,	we	have	to	understand	the	condition,	to	separate	the	various	parts	of	the
condition,	 and	 to	 ask:	 Can	 you	 write	 them	 down?	 In	 easy	 cases,	 we	 succeed	 without	 hesitation	 in
dividing	the	condition	into	parts	that	can	be	written	down	in	mathematical	symbols;	in	difficult	cases,	the
appropriate	division	of	the	condition	is	less	obvious.

The	foregoing	explanation	should	be	read	again	after	the	study	of	the	following	examples.
2.	Find	two	quantities	whose	sum	is	78	and	whose	product	is	1296.
We	divide	the	page	by	a	vertical	line.	On	one	side,	we	write	the	verbal	statement	split	into	appropriate

parts.	 On	 the	 other	 side,	 we	 write	 algebraic	 signs,	 opposite	 to	 the	 corresponding	 part	 of	 the	 verbal
statement.	The	original	is	on	the	left,	the	translation	into	symbols	on	the	right.

Stating	the	problem



In	this	case,	the	verbal	statement	splits	almost	automatically	into	successive	parts,	each	of	which	can
be	immediately	written	down	in	mathematical	symbols.

3.	Find	the	breadth	and	the	height	of	a	right	prism	with	square	base,	being	given	the	volume,	63	cu.
in.,	and	the	area	of	the	surface,	102	sq.	in.
What	are	the	unknowns?	The	side	of	the	base,	say	x,	and	the	altitude	of	the	prism,	say	y.
What	are	the	data?	The	volume,	63,	and	the	area,	102.
What	 is	 the	condition?	The	prism	whose	base	 is	a	square	with	side	x	and	whose	altitude	 is	y	must

have	the	volume	63	and	the	area	102.
Separate	the	various	parts	of	the	condition.	There	are	two	parts,	one	concerned	with	the	volume,	the

other	with	the	area.
We	can	scarcely	hesitate	in	dividing	the	whole	condition	just	in	these	two	parts;	but	we	cannot	write

down	these	parts	“immediately.”	We	must	know	how	to	calculate	the	volume	and	the	various	parts	of	the
area.	Yet,	 if	we	know	 that	much	geometry,	we	can	easily	 restate	both	parts	of	 the	condition	 so	 that	 the
translation	into	equations	is	feasible.	We	write	on	the	left	hand	side	of	the	page	an	essentially	rearranged
and	expanded	statement	of	the	problem,	ready	for	translation	into	algebraic	language.

4.	Being	given	the	equation	of	a	straight	line	and	the	coordinates	of	a	point,	find	the	point	which	is
symmetrical	to	the	given	point	with	respect	to	the	given	straight	line.

This	is	a	problem	of	plane	analytic	geometry.
What	is	the	unknown?	A	point,	with	coordinates,	say,	p,	q.
What	is	given?	The	equation	of	a	straight	line,	say	y	=	mx	+	n,	and	a	point	with	coordinates,	say,	a,	b.
What	is	the	condition?	The	points	(a,	b)	and	(p,	q)	are	symmetrical	to	each	other	with	respect	to	the

line	y	=	mx	+	n.
We	now	reach	the	essential	difficulty	which	is	to	divide	the	condition	into	parts	each	of	which	can	be

expressed	in	the	language	of	analytic	geometry.	The	nature	of	this	difficulty	must	be	well	understood.	A
decomposition	 of	 the	 condition	 into	 parts	 may	 be	 logically	 unobjectionable	 and	 nevertheless	 useless.



What	we	need	here	is	a	decomposition	into	parts	which	are	fit	 for	analytic	expression.	In	order	 to	find
such	a	decomposition	we	must	go	back	to	the	definition	of	symmetry,	but	keep	an	eye	on	the	resources	of
analytic	geometry.	What	 is	meant	by	symmetry	with	respect	 to	a	straight	 line?	What	geometric	relations
can	we	express	simply	 in	analytic	geometry?	We	concentrate	upon	the	first	question,	but	we	should	not
forget	the	second.	Thus,	eventually,	we	may	find	the	decomposition	which	we	are	going	to	state.

Signs	of	progress.	As	Columbus	and	his	companions	sailed	westward	across	an	unknown	ocean	they
were	cheered	whenever	they	saw	birds.	They	regarded	a	bird	as	a	favorable	sign,	indicating	the	nearness
of	land.	But	in	this	they	were	repeatedly	disappointed.	They	watched	for	other	signs	too.	They	thought	that
floating	seaweed	or	low	banks	of	cloud	might	indicate	land,	but	they	were	again	disappointed.	One	day,
however,	the	signs	multiplied.	On	Thursday,	the	11th	of	October,	1492,	“they	saw	sandpipers,	and	a	green
reed	near	the	ship.	Those	of	the	caravel	Pinta	saw	a	cane	and	a	pole,	and	they	took	up	another	small	pole
which	appeared	to	have	been	worked	by	iron;	also	another	bit	of	cane,	a	land-plant,	and	a	small	board.
The	crew	of	the	caravel	Niña	also	saw	signs	of	land,	and	a	small	branch	covered	with	berries.	Everyone
breathed	afresh	and	rejoiced	at	these	signs.”	And	in	fact	the	next	day	they	sighted	land,	the	first	island	of	a
New	World.

Our	undertaking	may	be	 important	 or	 unimportant,	 our	 problem	of	 any	kind—when	we	 are	working
intensely,	we	watch	eagerly	for	signs	of	progress	as	Columbus	and	his	companions	watched	for	signs	of
approaching	 land.	 We	 shall	 discuss	 a	 few	 examples	 in	 order	 to	 understand	 what	 can	 be	 reasonably
regarded	as	a	sign	of	approaching	the	solution.

1.	 Examples.	 I	 have	 a	 chess	 problem.	 I	 have	 to	 mate	 the	 black	 king	 in,	 say,	 two	 moves.	 On	 the
chessboard	 there	 is	a	white	knight,	quite	a	distance	 from	 the	black	king,	 that	 is	apparently	superfluous.
What	is	it	good	for?	I	am	obliged	to	leave	this	question	unanswered	at	first.	Yet	after	various	trials,	I	hit
upon	a	new	move	and	observe	that	it	would	bring	that	apparently	superfluous	white	knight	into	play.	This
observation	gives	me	a	new	hope.	I	regard	it	as	a	favorable	sign:	that	new	move	has	some	chance	to	be
the	right	one.	Why?

In	 a	well-constructed	 chess	 problem	 there	 is	 no	 superfluous	 piece.	Therefore,	we	 have	 to	 take	 into
account	all	chessmen	on	the	board;	we	have	to	use	all	the	data.	The	correct	solution	does	certainly	use
all	 the	 pieces,	 even	 that	 apparently	 superfluous	white	 knight.	 In	 this	 last	 respect,	 the	 new	move	 that	 I
contemplate	agrees	with	the	correct	move	that	I	am	supposed	to	find.	The	new	move	looks	like	the	correct
move;	it	might	be	the	correct	move.

It	 is	 interesting	 to	consider	a	 similar	 situation	 in	a	mathematical	problem.	My	 task	 is	 to	express	 the
area	of	a	triangle	in	terms	of	its	three	sides,	a,	b,	and	c.	I	have	already	made	some	sort	of	plan.	I	know,
more	 or	 less	 clearly,	 which	 geometrical	 connections	 I	 have	 to	 take	 into	 account	 and	 what	 sort	 of
calculations	 I	have	 to	perform.	Yet	 I	am	not	quite	sure	whether	my	plan	will	work.	 If	now,	proceeding
along	the	line	prescribed	by	my	plan,	I	observe	that	the	quantity



enters	into	the	expression	of	the	area	I	am	about	to	construct,	I	have	good	reason	to	be	cheered.	Why?
In	fact,	it	must	be	taken	into	account	that	the	sum	of	any	two	sides	of	a	triangle	is	greater	than	the	third

side.	 This	 involves	 a	 certain	 restriction.	 The	 given	 lengths,	 a,	 b,	 and	 c	 cannot	 be	 quite	 arbitrary;	 for
instance,	b	+	c	must	be	greater	than	a.	This	is	an	essential	part	of	the	condition,	and	we	should	use	 the
whole	condition.	If	b	+	c	is	not	greater	than	a	the	formula	I	seek	is	bound	to	become	illusory.	Now,	the
square	root	displayed	above	becomes	imaginary	if	b	+	c	−	a	is	negative—that	is,	if	b	+	c	is	less	than	a—
and	 so	 the	 square	 root	 becomes	unfit	 to	 represent	 a	 real	 quantity	 under	 just	 those	 circumstances	 under
which	the	desired	expression	is	bound	to	become	illusory.	Thus	my	formula,	into	which	that	square	root
enters,	has	an	important	property	in	common	with	the	true	formula	for	the	area.	My	formula	looks	like	the
true	formula;	it	might	be	the	true	formula.

Here	 is	one	more	example.	Some	 time	ago,	 I	wished	 to	prove	a	 theorem	 in	solid	geometry.	Without
much	 trouble	 I	 found	 a	 first	 remark	 that	 appeared	 to	 be	 pertinent;	 but	 then	 I	 got	 stuck.	 Something	was
missing	to	finish	the	proof.	When	I	gave	up	that	day	I	had	a	much	clearer	notion	than	at	the	outset	how	the
proof	should	look,	how	the	gap	should	be	filled;	but	I	was	not	able	to	fill	it.	The	next	day,	after	a	good
night’s	rest,	I	looked	again	into	the	question	and	soon	hit	upon	an	analogous	theorem	in	plane	geometry.	In
a	flash	I	was	convinced	that	now	I	had	got	hold	of	the	solution	and	I	had,	I	think,	good	reason	too	to	be
convinced.	Why?

In	 fact,	analogy	 is	 a	 great	 guide.	The	 solution	 of	 a	 problem	 in	 solid	 geometry	 often	 depends	 on	 an
analogous	problem	in	plane	geometry	(see	ANALOGY,	3-7).	Thus,	in	my	case,	there	was	a	chance	from	the
outset	 that	 the	desired	proof	would	use	as	a	 lemma	some	 theorem	of	plane	geometry	of	 the	kind	which
actually	came	to	my	mind.	“This	theorem	looks	like	the	lemma	I	need;	it	might	be	the	lemma	I	need”—
such	was	my	reasoning.

If	Columbus	and	his	men	had	taken	the	trouble	to	reason	explicitly,	they	would	have	reasoned	in	some
similar	way.	They	knew	how	the	sea	looks	near	the	shore.	They	knew	that,	more	often	than	on	the	open
sea,	there	are	birds	in	the	air,	coming	from	the	land,	and	objects	floating	in	the	water,	detached	from	the
seashore.	Many	of	the	men	must	have	observed	such	things	when	from	former	voyages	they	had	returned
to	their	home	port.	The	day	before	that	memorable	date	on	which	they	sighted	the	island	of	San	Salvador,
as	the	floating	objects	in	the	water	became	so	frequent,	they	thought:	“It	looks	as	if	we	were	approaching
some	 land;	 we	 may	 be	 approaching	 some	 land”	 and	 “everyone	 breathed	 afresh	 and	 rejoiced	 at	 these
signs.”

2.	Heuristic	character	of	signs	of	progress.	Let	us	insist	upon	a	point	which	is	perhaps	already	clear
to	everyone;	but	it	is	very	important	and,	therefore,	it	should	be	completely	clear.

The	 type	 of	 reasoning	 illustrated	 by	 the	 foregoing	 examples	 deserves	 to	 be	 noticed	 and	 taken	 into
account	 seriously,	 although	 it	 yields	 only	 a	 plausible	 indication	 and	 not	 an	 unfailing	 certainty.	 Let	 us
restate	pedantically,	at	full	length,	in	rather	unnatural	detail,	one	of	these	reasonings:

If	we	are	approaching	land,	we	often	see	birds.
Now	we	see	birds.
Therefore,	probably,	we	are	approaching	land.

Without	 the	word	“probably”	 the	conclusion	would	be	an	outright	 fallacy.	 In	 fact,	Columbus	and	his
companions	saw	birds	many	times	but	were	disappointed	later.	Just	once	came	the	day	on	which	they	saw
sandpipers	followed	by	the	day	of	discovery.

With	 the	 word	 “probably”	 the	 conclusion	 is	 reasonable	 and	 natural	 but	 by	 no	 means	 a	 proof,	 a



demonstrative	conclusion;	it	 is	only	an	indication,	a	heuristic	suggestion.	It	would	be	a	great	mistake	to
forget	 that	 such	 a	 conclusion	 is	 only	 probable,	 and	 to	 regard	 it	 as	 certain.	 But	 to	 disregard	 such
conclusions	entirely	would	be	a	 still	greater	mistake.	 If	you	 take	a	heuristic	conclusion	as	certain,	you
may	 be	 fooled	 and	 disappointed;	 but	 if	 you	 neglect	 heuristic	 conclusions	 altogether	 you	will	make	 no
progress	 at	 all.	 The	most	 important	 signs	 of	 progress	 are	 heuristic.	 Should	we	 trust	 them?	 Should	we
follow	them?	Follow,	but	keep	your	eyes	open.	Trust	but	look.	And	never	renounce	your	judgment.

3.	Clearly	expressible	signs.	We	can	look	at	the	foregoing	examples	from	another	point	of	view.
In	one	of	these	examples,	we	regarded	as	a	favorable	sign	that	we	succeeded	in	bringing	into	play	a

datum	not	used	before	(the	white	knight).	We	were	quite	right	to	so	regard	it.	In	fact,	to	solve	a	problem
is,	essentially,	to	find	the	connection	between	the	data	and	the	unknown.	Moreover	we	should,	at	least
in	well-stated	problems,	use	all	 the	data,	 connect	 each	 of	 them	with	 the	 unknown.	Thus,	 bringing	 one
more	datum	into	play	is	quite	properly	felt	as	progress,	as	a	step	forward.

In	 another	 example,	 we	 regarded	 as	 a	 favorable	 sign	 that	 an	 essential	 clause	 of	 the	 condition	was
appropriately	taken	into	account	by	our	formula.	We	were	quite	right	to	so	regard	it.	In	fact,	we	should	use
the	whole	condition.	Thus,	taking	into	account	one	more	clause	of	the	condition	is	justly	felt	as	progress,
as	a	move	in	the	right	direction.

In	 still	 another	 example,	 we	 regarded	 as	 a	 favorable	 sign	 the	 emergence	 of	 a	 simpler	 analogous
problem.	This	also	 is	 justified.	 Indeed,	analogy	 is	one	of	 the	main	sources	of	 invention.	 If	other	means
fail,	 we	 should	 try	 to	 imagine	 an	 analogous	 problem.	 Therefore,	 if	 such	 a	 problem	 emerges
spontaneously,	by	its	own	accord,	we	naturally	feel	elated;	we	feel	that	we	are	approaching	the	solution.

After	these	examples,	we	can	now	easily	grasp	the	general	idea.	There	are	certain	mental	operations
typically	useful	 in	solving	problems.	(The	most	usual	operations	of	 this	kind	are	 listed	 in	 this	book.)	If
such	a	typical	operation	succeeds	(if	one	more	datum	is	connected	with	the	unknown—one	more	clause	of
the	condition	is	 taken	into	account—a	simpler	analogous	problem	is	 introduced)	 its	success	 is	felt	as	a
sign	of	progress.	Having	understood	this	essential	point,	we	can	express	with	some	clearness	the	nature	of
still	other	signs	of	progress.	All	we	have	to	do	is	to	read	down	our	list	and	look	at	the	various	questions
and	suggestions	from	our	newly	acquired	point	of	view.

Thus,	understanding	clearly	the	nature	of	the	unknown	means	progress.	Clearly	disposing	the	various
data	 so	 that	we	 can	 easily	 recall	 any	 one	 also	means	 progress.	Visualizing	 vividly	 the	 condition	 as	 a
whole	may	mean	 an	 essential	 advance;	 and	 separating	 the	 condition	 into	 appropriate	 parts	may	 be	 an
important	step	forward.	When	we	have	found	a	figure	that	we	can	easily	imagine,	or	a	notation	that	we
can	 easily	 retain,	we	 can	 reasonably	 believe	 that	we	 have	made	 some	 progress.	 Recalling	 a	 problem
related	to	ours	and	solved	before	may	be	a	decisive	move	in	the	right	direction.

And	so	on,	and	so	forth.	To	each	mental	operation	clearly	conceived	corresponds	a	certain	sign	clearly
expressible.	Our	list,	appropriately	read,	lists	also	signs	of	progress.

Now,	the	questions	and	suggestions	of	our	list	are	simple,	obvious,	just	plain	common	sense.	This	has
been	said	 repeatedly	and	 the	same	can	be	said	of	 the	connected	signs	of	progress	we	discuss	here.	To
read	such	signs	no	occult	science	is	needed,	only	a	little	common	sense	and,	of	course,	a	little	experience.

4.	Less	clearly	expressible	signs.	When	we	work	 intently,	we	feel	keenly	 the	pace	of	our	progress:
when	it	is	rapid	we	are	elated;	when	it	is	slow	we	are	depressed.	We	feel	such	differences	quite	clearly
without	being	able	to	point	out	any	distinct	sign.	Moods,	feelings,	general	aspects	of	the	situation	serve	to
indicate	our	progress.	They	are	not	easy	to	express.	“It	looks	good	to	me,”	or	“It	is	not	so	good,”	say	the
unsophisticated.	 More	 sophisticated	 people	 express	 themselves	 with	 some	 nuance:	 “This	 is	 a	 well-
balanced	plan,”	or	“No,	something	is	still	lacking	and	that	spoils	the	harmony.”	Yet	behind	primitive	or
vague	expressions	there	is	an	unmistakable	feeling	which	we	follow	with	confidence	and	which	leads	us
frequently	 in	 the	 right	 direction.	 If	 such	 feeling	 is	 very	 strong	 and	 emerges	 suddenly,	 we	 speak	 of



inspiration.	People	usually	cannot	doubt	their	inspirations	and	are	sometimes	fooled	by	them.	In	fact,	we
should	 treat	 guiding	 feelings	 and	 inspirations	 just	 as	 we	 treat	 the	 more	 clearly	 expressible	 signs	 of
progress	which	we	have	considered	before.	Trust,	but	keep	your	eyes	open.

Always	follow	your	inspiration—with	a	grain	of	doubt.
[What	is	the	nature	of	those	guiding	feelings?	Is	there	some	less	vague	meaning	behind	words	of	such

aesthetic	nuances	as	“well-balanced,”	or	“harmonious”?	These	questions	may	be	more	speculative	than
practical,	but	the	present	context	indicates	answers	which	perhaps	deserve	to	be	stated:	Since	the	more
clearly	expressible	signs	of	progress	are	connected	with	the	success	or	failure	of	certain	rather	definite
mental	 operations,	we	may	 suspect	 that	 our	 less	 clearly	 expressible	 guiding	 feelings	may	 be	 similarly
connected	 with	 other,	 more	 obscure,	 mental	 activities—perhaps	 with	 activities	 whose	 nature	 is	 more
“psychological”	and	less	“logical.”]

5.	How	signs	help.	I	have	a	plan.	I	see	pretty	clearly	where	I	should	begin	and	which	steps	I	should
take	first.	Yet	I	do	not	quite	see	the	lay-out	of	the	road	farther	on;	I	am	not	quite	certain	that	my	plan	will
work;	 and,	 in	 any	 case,	 I	 have	 still	 a	 long	way	 to	 go.	Therefore,	 I	 start	 out	 cautiously	 in	 the	direction
indicated	by	my	plan	and	keep	a	lookout	for	signs	of	progress.	If	the	signs	are	rare	or	indistinct,	I	become
more	hesitant.	And	if	for	a	long	time	they	fail	to	appear	altogether,	I	may	lose	courage,	turn	back,	and	try
another	 road.	On	 the	 other	 hand,	 if	 the	 signs	 become	more	 frequent	 as	 I	 proceed,	 if	 they	multiply,	my
hesitation	 fades,	 my	 spirits	 rise,	 and	 I	 move	 with	 increasing	 confidence,	 just	 as	 Columbus	 and	 his
companions	did	before	sighting	the	island	of	San	Salvador.

Signs	may	guide	our	acts.	Their	absence	may	warn	us	of	a	blind	alley	and	save	us	 time	and	useless
exertion;	their	presence	may	cause	us	to	concentrate	our	effort	upon	the	right	spot.

Yet	 signs	may	also	be	deceptive.	 I	 once	abandoned	a	 certain	path	 for	 lack	of	 signs,	but	 a	man	who
came	after	me	and	followed	that	path	a	little	farther	made	an	important	discovery—to	my	great	annoyance
and	long-lasting	regret.	He	not	only	had	more	perseverance	than	I	did	but	he	also	read	correctly	a	certain
sign	which	I	had	failed	to	notice.	Again,	I	may	follow	a	road	cheerfully,	encouraged	by	favorable	signs,
and	run	against	an	unsuspected	and	insurmountable	obstacle.

Yes,	signs	may	misguide	us	in	any	single	case,	but	they	guide	us	right	in	the	majority	of	them.	A	hunter
may	misinterpret	now	and	then	the	traces	of	his	game	but	he	must	be	right	on	the	average,	otherwise	he
could	not	make	a	living	by	hunting.

It	takes	experience	to	interpret	the	signs	correctly.	Some	of	Columbus’s	companions	certainly	knew	by
experience	how	the	sea	looks	near	the	shore	and	so	they	were	able	to	read	the	signs	which	suggested	that
they	were	approaching	land.	The	expert	knows	by	experience	how	the	situation	looks	and	feels	when	the
solution	is	near	and	so	he	is	able	 to	read	the	signs	which	indicate	 that	he	 is	approaching	it.	The	expert
knows	more	signs	than	the	inexperienced,	and	he	knows	them	better;	his	main	advantage	may	consist	 in
such	knowledge.	An	expert	hunter	notices	traces	of	game	and	appraises	even	their	freshness	or	staleness
where	the	inexperienced	one	is	unable	to	see	anything.

The	 main	 advantage	 of	 the	 exceptionally	 talented	 may	 consist	 in	 a	 sort	 of	 extraordinary	 mental
sensibility.	With	exquisite	sensibility,	he	feels	subtle	signs	of	progress	or	notices	their	absence	where	the
less	talented	are	unable	to	perceive	a	difference.

[6.	Heuristic	 syllogism.	 In	 section	 2	 we	 came	 across	 a	 mode	 of	 heuristic	 reasoning	 that	 deserves
further	consideration	and	a	technical	term.	We	begin	by	restating	that	reasoning	in	the	following	form:

If	we	are	approaching	land,	we	often	see	birds.
Now	we	see	birds.

Therefore,	it	becomes	more	credible	that	we	are	approaching	land.



The	two	statements	above	the	horizontal	line	may	be	called	the	premises,	the	statement	under	the	line,
the	conclusion.	And	the	whole	pattern	of	reasoning	may	be	termed	a	heuristic	syllogism.

The	premises	 are	 stated	here	 in	 the	 same	 form	as	 in	 section	2,	but	 the	conclusion	 is	more	carefully
worded.	An	 essential	 circumstance	 is	 better	 emphasized.	 Columbus	 and	 his	men	 conjectured	 from	 the
beginning	that	they	would	eventually	find	land	sailing	westward;	and	they	must	have	given	some	credence
to	this	conjecture,	otherwise	they	would	not	have	started	out	at	all.	As	they	proceeded,	they	related	every
incident,	major	or	minor,	to	their	dominating	question:	“Are	we	approaching	land?”	Their	confidence	rose
and	fell	as	events	occurred	or	failed	to	occur,	and	each	man’s	beliefs	fluctuated	more	or	less	differently
according	 to	 his	 background	 and	 character.	 The	 whole	 dramatic	 tension	 of	 the	 voyage	 is	 due	 to	 such
fluctuations	of	confidence.

The	heuristic	syllogism	quoted	exhibits	a	reasonable	ground	for	a	change	in	the	level	of	confidence.	To
occasion	such	changes	is	the	essential	role	of	this	kind	of	reasoning	and	this	point	is	better	expressed	by
the	wording	given	here	than	by	the	one	in	section	2.

The	general	pattern	suggested	by	our	example	can	be	exhibited	thus:

If	A	is	true,	then	B	is	also	true,	as	we	know.
Now,	it	turns	out	that	B	is	true.

Therefore,	A	becomes	more	credible.

Still	shorter:

If	A	then	B
B	true

A	more	credible

In	 this	 schematic	 statement	 the	 horizontal	 line	 stands	 for	 the	 word	 “therefore”	 and	 expresses	 the
implication,	the	essential	link	between	the	premises	and	the	conclusion.]

[7.	Nature	of	plausible	reasoning.	In	this	little	book	we	are	discussing	a	philosophical	question.	We
discuss	 it	as	practically	and	 informally	and	as	 far	 from	high-brow	modes	of	expression	as	we	can,	but
nevertheless	our	subject	 is	philosophical.	 It	 is	concerned	with	 the	nature	of	heuristic	 reasoning	and,	by
extension,	with	 a	 kind	 of	 reasoning	which	 is	 nondemonstrative	 although	 important	 and	which	we	 shall
call,	for	lack	of	a	better	term,	plausible	reasoning.

The	signs	that	convince	the	inventor	that	his	idea	is	good,	the	indications	that	guide	us	in	our	everyday
affairs,	 the	 circumstantial	 evidence	 of	 the	 lawyer,	 the	 inductive	 evidence	 of	 the	 scientist,	 statistical
evidence	invoked	in	many	and	diverse	subjects—all	these	kinds	of	evidence	agree	in	two	essential	points.
First,	 they	 do	 not	 have	 the	 certainty	 of	 a	 strict	 demonstration.	 Second,	 they	 are	 useful	 in	 acquiring
essentially	new	knowledge,	and	even	indispensable	to	any	not	purely	mathematical	or	logical	knowledge,
to	any	knowledge	concerned	with	the	physical	world.	We	could	call	the	reasoning	that	underlies	this	kind
of	evidence	“heuristic	reasoning”	or	“inductive	reasoning”	or	(if	we	wish	to	avoid	stretching	the	meaning
of	existing	terms)	“plausible	reasoning.”	We	accept	here	the	last	term.

The	 heuristic	 syllogism	 introduced	 in	 the	 foregoing	 may	 be	 regarded	 as	 the	 simplest	 and	 most
widespread	pattern	of	plausible	reasoning.	It	reminds	us	of	a	classical	pattern	of	demonstrative	reasoning,
of	the	so-called	“modus	tollens	of	hypothetical	syllogism.”	We	exhibit	here	both	patterns	side	by	side:



The	 comparison	 of	 these	 patterns	may	 be	 instructive.	 It	may	 grant	 us	 an	 insight,	 not	 easily	 obtainable
elsewhere,	into	the	nature	of	plausible	(heuristic,	inductive)	reasoning.

Both	patterns	have	the	same	first	premise:

If	A	then	B.

They	differ	in	the	second	premise.	The	statements:

			B	false B	true

are	exactly	opposite	to	each	other	but	they	are	of	“similar	logical	nature,”	they	are	on	the	same	“logical
level.”	The	great	difference	arises	after	the	premises.	The	conclusions

			A	false A	more	credible

are	on	different	 logical	 levels	and	 their	 relations	 to	 their	 respective	premises	are	of	a	different	 logical
nature.

The	conclusion	of	the	demonstrative	syllogism	is	of	the	same	logical	nature	as	the	premises.	Moreover,
this	conclusion	is	fully	expressed	and	is	fully	supported	by	the	premises.	 If	my	neighbor	and	I	agree	 to
accept	 the	 premises,	 we	 cannot	 reasonably	 disagree	 about	 accepting	 also	 the	 conclusion,	 however
different	our	tastes	or	other	convictions	may	be.

The	 conclusion	 of	 the	 heuristic	 syllogism	 differs	 from	 the	 premises	 in	 its	 logical	 nature;	 it	 is	more
vague,	 not	 so	 sharp,	 less	 fully	 expressed.	This	 conclusion	 is	 comparable	 to	 a	 force,	 has	 direction	 and
magnitude.	It	pushes	us	in	a	certain	direction:	A	becomes	more	credible.	The	conclusion	also	has	a	certain
strength:	A	may	become	much	more	credible,	or	 just	a	 little	more	credible.	The	conclusion	 is	not	 fully
expressed	and	is	not	fully	supported	by	the	premises.	The	direction	is	expressed	and	is	 implied	by	the
premises,	 the	magnitude	is	not.	For	any	reasonable	person,	 the	premises	 involve	 that	A	becomes	more
credible	 (certainly	 not	 less	 credible).	 Yet	 my	 neighbor	 and	 I	 can	 honestly	 disagree	 how	 much	 more
credible	A	becomes,	since	our	temperaments,	our	backgrounds,	and	our	unstated	reasons	may	be	different.

In	 the	demonstrative	 syllogism	 the	premises	constitute	a	 full	basis	 on	which	 the	 conclusion	 rests.	 If
both	premises	stand,	the	conclusion	stands	too.	If	we	receive	some	new	information	that	does	not	change
our	belief	in	the	premises,	it	cannot	change	our	belief	in	the	conclusion.

In	the	heuristic	syllogism	the	premises	constitute	only	one	part	of	the	basis	on	which	the	conclusion
rests,	the	fully	expressed,	the	“visible”	part	of	the	basis;	there	is	an	unexpressed,	invisible	part,	formed	by
something	 else,	 by	 inarticulate	 feelings	 perhaps,	 or	 by	 unstated	 reasons.	 In	 fact,	 it	 can	 happen	 that	we
receive	some	new	information	that	leaves	our	belief	in	both	premises	completely	intact,	but	influences	the
trust	we	put	in	A	in	a	way	just	opposite	to	that	expressed	in	the	conclusion.	To	find	A	more	plausible	on
the	 ground	 of	 the	 premises	 of	 our	 heuristic	 syllogism	 is	 only	 reasonable.	 Yet	 tomorrow	 I	 may	 find
grounds,	not	interfering	at	all	with	these	premises,	that	make	A	appear	less	plausible,	or	even	definitively
refute	it.	The	conclusion	may	be	shaken	and	even	overturned	completely	by	commotions	in	the	invisible
parts	of	its	foundation,	although	the	premises,	the	visible	part,	stand	quite	firm.



These	 remarks	 seem	 to	make	 somewhat	more	 understandable	 the	 nature	 of	 heuristic,	 inductive,	 and
other	 sorts	 of	 not	 demonstrative	 plausible	 reasoning,	 which	 appear	 so	 baffling	 and	 elusive	 when
approached	 from	 the	 point	 of	 view	 of	 purely	 demonstrative	 logic.	Many	more	 concrete	 examples,	 the
consideration	of	other	kinds	of	heuristic	syllogism,	and	an	investigation	of	the	concept	of	probability	and
other	 allied	 concepts	 seem	 to	 be	 necessary	 to	 complete	 the	 approach	 here	 chosen;	 cf.	 the	 author’s
Mathematics	and	Plausible	Reasoning.]

Heuristic	 reasons	are	 important	although	 they	prove	nothing.	To	clarify	our	heuristic	 reasons	 is	also
important	although	behind	any	reason	clarified	there	are	many	others	that	remain	obscure	and	are	perhaps
still	more	important.

Specialization	is	passing	from	the	consideration	of	a	given	set	of	objects	to	that	of	a	smaller	set,	or	of
just	one	object,	contained	in	the	given	set.	Specialization	is	often	useful	in	the	solution	of	problems.

1.	Example.	In	a	triangle,	let	r	be	the	radius	of	the	inscribed	circle,	R	the	radius	of	the	circumscribed
circle,	and	H	the	longest	altitude.	Then

r	+	R	 	H.

We	have	to	prove	(or	disprove)	this	theorem9;	we	have	a	“problem	to	prove.”
The	proposed	 theorem	is	of	an	unusual	sort.	We	can	scarcely	remember	any	 theorem	about	 triangles

with	a	similar	conclusion.	If	nothing	else	occurs	to	us,	we	may	test	some	special	case	of	this	unfamiliar
assertion.	Now,	the	best	known	special	triangle	is	the	equilateral	triangle	for	which

so	that,	in	this	case,	the	assertion	is	correct.
If	no	other	idea	presents	itself,	we	may	test	the	more	extended	special	case	of	isosceles	triangles.	The

form	of	an	isosceles	triangle	varies	with	the	angle	at	 the	vertex	and	there	are	two	extreme	(or	limiting)
cases,	the	one	in	which	the	angle	at	the	vertex	becomes	0°,	and	the	other	in	which	it	becomes	180°.	In	the
first	extreme	case	the	base	of	the	isosceles	triangle	vanishes	and	visibly

thus,	the	assertion	is	verified.	In	the	second	limiting	case,	however,	all	three	heights	vanish	and

r	=	0						R	=	∞						H	=	0.

The	assertion	is	not	verified.	We	have	proved	that	the	proposed	theorem	is	false,	and	so	we	have	solved
our	problem.

By	the	way,	it	is	clear	that	the	assertion	is	also	false	for	very	flat	isosceles	triangles	whose	angle	at	the
vertex	is	nearly	180°	so	that	we	may	“officially”	disregard	the	extreme	cases	whose	consideration	may
appear	as	not	quite	“orthodox.”

2.	“L’exception	confirme	la	règle.”	“The	exception	proves	the	rule.”	We	must	take	this	widely	known
saying	 as	 a	 joke,	 laughing	 at	 the	 laxity	 of	 a	 certain	 sort	 of	 logic.	 If	 we	 take	 matters	 seriously,	 one
exception	 is	enough,	of	course,	 to	 refute	 irrefragably	any	would-be	rule	or	general	statement.	The	most



usual	and,	in	some	respects,	the	best	method	to	refute	such	a	statement	consists	precisely	in	exhibiting	an
object	that	does	not	comply	with	it;	such	an	object	is	called	a	counter-example	by	certain	writers.

The	 allegedly	 general	 statement	 is	 concerned	 with	 a	 certain	 set	 of	 objects;	 in	 order	 to	 refute	 the
statement	we	specialize,	we	pick	out	from	the	set	an	object	that	does	not	comply	with	it.	The	foregoing
example	(under	1)	shows	how	it	 is	done.	We	may	examine	at	 first	any	simple	special	case,	 that	 is,	any
object	chosen	more	or	 less	at	random	which	we	can	easily	test.	 If	 the	test	shows	that	 the	case	is	not	 in
accordance	with	 the	 general	 statement,	 the	 statement	 is	 refuted	 and	 our	 task	 finished.	 If,	 however,	 the
object	examined	complies	with	the	statement	we	may	possibly	derive	some	hint	from	its	examination.	We
may	 receive	 the	 impression	 that	 the	 statement	 could	 be	 true,	 after	 all,	 and	 some	 suggestion	 in	 which
direction	we	should	seek	the	proof.	Or,	we	may	receive,	as	in	our	example	under	1,	some	suggestion	in
which	direction	we	should	seek	 the	counter-example,	 that	 is,	which	other	special	cases	should	we	test.
We	may	modify	 the	case	we	have	 just	examined,	vary	 it,	 investigate	some	more	extended	special	case,
look	around	for	extreme	cases,	as	exemplified	under	1.

Extreme	cases	are	particularly	instructive.	If	a	general	statement	is	supposed	to	apply	to	all	mammals
it	must	 apply	even	 to	 such	an	unusual	mammal	as	 the	whale.	Let	us	not	 forget	 this	 extreme	case	of	 the
whale.	 Examining	 it,	 we	may	 refute	 the	 general	 statement;	 there	 is	 a	 good	 chance	 for	 that,	 since	 such
extreme	cases	are	apt	to	be	overlooked	by	the	inventors	of	generalizations.	If,	however,	we	find	that	the
general	 statement	 is	 verified	 even	 in	 the	 extreme	 case,	 the	 inductive	 evidence	 derived	 from	 this
verification	will	be	strong,	 just	because	 the	prospect	of	 refutation	was	strong.	Thus,	we	are	 tempted	 to
reshape	the	saying	from	which	we	started:	“Prospective	exceptions	test	the	rule.”

3.	Example.	Given	the	speeds	of	two	ships	and	their	positions	at	a	certain	moment;	each	ship	steers	a
rectilinear	course	with	constant	speed.	Find	the	distance	of	the	two	ships	when	they	are	nearest	to	each
other.
What	 is	 the	 unknown?	 The	 shortest	 distance	 between	 two	 moving	 bodies.	 The	 bodies	 have	 to	 be

considered	as	material	points.
What	are	the	data?	The	initial	positions	of	the	moving	material	points,	and	the	speed	of	each.	These

speeds	are	constant	in	amount	and	direction.

FIG.	19



What	is	the	condition?	The	distance	has	to	be	ascertained	when	it	is	the	shortest,	that	is,	at	the	moment
when	the	two	moving	points	(ships)	are	nearest	to	each	other.
Draw	 a	 figure.	 Introduce	 suitable	 notation.	 In	 Fig.	 19,	 the	 points	A	 and	B	 mark	 the	 given	 initial

positions	of	the	two	ships.	The	directed	line-segments	(vectors)	AP	and	BQ	represent	the	given	speeds	so
that	the	first	ship	proceeds	along	the	straight	line	through	the	points	A	and	P,	and	covers	the	distance	AP	in
unit	time.	The	second	ship	travels	similarly	along	the	straight	line	BQ.
What	is	the	unknown?	The	shortest	distance	of	the	two	ships,	the	one	traveling	along	AP	and	the	other

along	BQ.
It	is	clear	by	now	what	we	should	find;	yet,	if	we	wish	to	use	only	elementary	means,	we	may	be	still

in	the	dark	how	we	should	find	it.	The	problem	is	not	too	easy	and	its	difficulty	has	some	peculiar	nuance
which	we	may	try	to	express	by	saying	that	“there	is	too	much	variety.”	The	initial	positions,	A	and	B,	and
the	speeds,	AP	and	BQ,	can	be	given	in	various	ways;	in	fact,	the	four	points	A,	B,	P,	Q	may	be	chosen
arbitrarily.	Now,	whatever	the	data	may	be,	the	required	solution	must	apply	and	we	do	not	see	yet	how	to
fit	the	same	solution	to	all	these	possibilities.	Out	of	such	feeling	of	“too	much	variety”	this	question	and
answer	may	eventually	emerge:
Could	you	imagine	a	more	accessible	related	problem?	A	more	special	problem?	Of	course,	there	is

the	extreme	special	case	in	which	one	of	the	speeds	vanishes.	Yes,	the	ship	in	B	may	lay	at	anchor,	Q	may
coincide	with	B.	The	shortest	distance	from	the	ship	at	rest	to	the	moving	ship	is	the	perpendicular	to	the
straight	line	along	which	the	latter	moves.

4.	If	the	foregoing	idea	emerges	with	the	premonition	that	there	is	more	ahead	and	with	the	feeling	that
that	extreme	special	case	(which	could	appear	as	too	simple	to	be	relevant)	has	some	role	to	play—then	it
is	a	bright	idea	indeed.
Here	is	a	problem	related	to	yours,	that	specialized	problem	you	just	solved.	Could	you	use	it?	Could

you	use	its	result?	Should	you	introduce	some	auxiliary	element	in	order	to	make	its	use	possible?	 It
should	be	used,	but	how?	How	could	the	result	of	 the	case	 in	which	B	 is	at	 rest	be	used	in	 the	case	 in
which	B	is	moving?	Rest	is	a	special	case	of	motion.	And	motion	is	relative—and,	therefore,	whatever
the	given	velocity	of	B	may	be	I	can	consider	B	as	being	at	rest!	Here	is	the	idea	more	clearly:	If	I	impart
to	 the	 whole	 system,	 consisting	 of	 both	 ships,	 the	 same	 uniform	motion,	 the	 relative	 positions	 do	 not
change,	the	relative	distances	remain	the	same,	and	so	does	especially	the	shortest	relative	distance	of	the
two	ships	required	by	the	problem.	Now,	I	can	impart	a	motion	that	reduces	the	speed	of	one	of	the	ships
to	 zero,	 and	 so	 reduces	 the	 general	 case	 of	 the	 problem	 to	 the	 special	 case	 just	 solved.	Let	me	 add	 a
velocity,	opposite	to	BQ	but	of	the	same	amount,	both	to	BQ	and	to	AP.	This	is	the	auxiliary	element	that
makes	the	use	of	the	special	result	possible.



FIG.	20

See	Fig.	20	for	the	construction	of	the	shortest	distance,	BS.
5.	 The	 foregoing	 solution	 (under	 3,	 4)	 has	 a	 logical	 pattern	 that	 deserves	 to	 be	 analyzed	 and

remembered.
In	 order	 to	 solve	 our	 original	 problem	 (under	 3,	 first	 lines)	we	 have	 solved	 first	 another	 problem

which	we	may	call	appropriately	the	auxiliary	problem	(under	3,	last	lines).	This	auxiliary	problem	is	a
special	case	of	the	original	problem	(the	extreme	special	case	in	which	one	of	the	two	ships	is	at	rest).
The	 original	 problem	was	 proposed,	 the	 auxiliary	 problem	 invented	 in	 the	 course	 of	 the	 solution.	The
original	 problem	 looked	 hard,	 the	 solution	 of	 the	 auxiliary	 problem	 was	 immediate.	 The	 auxiliary
problem	was,	as	a	 special	 case,	 in	 fact	much	 less	ambitious	 than	 the	original	problem.	How	 is	 it	 then
possible	that	we	were	able	to	solve	the	original	problem	on	the	basis	of	the	auxiliary	problem?	Because
in	reducing	the	original	problem	to	the	auxiliary	problem,	we	added	a	substantial	supplementary	remark
(on	relativity	of	motion).

We	 succeeded	 in	 solving	 our	 original	 problem	 thanks	 to	 two	 remarks.	 First,	 we	 invented	 an
advantageous	 auxiliary	 problem.	 Second,	we	 discovered	 an	 appropriate	 supplementary	 remark	 to	 pass
from	the	auxiliary	problem	to	the	original	problem.	We	solved	the	proposed	problem	in	two	steps	as	we
might	cross	a	creek	in	two	steps	provided	we	were	lucky	enough	to	discover	an	appropriate	stone	in	the
middle	which	could	serve	as	a	momentary	foothold.

To	sum	up,	we	used	the	less	difficult,	less	ambitious,	special,	auxiliary	problem	as	a	stepping	stone	in
solving	the	more	difficult,	more	ambitious,	general,	original	problem.

6.	Specialization	has	many	other	uses	which	we	cannot	discuss	here.	It	may	be	just	mentioned	that	it
can	be	useful	in	testing	the	solution	(CAN	YOU	CHECK	THE	RESULT?	2).

A	somewhat	primitive	kind	of	specialization	is	often	useful	 to	 the	teacher.	It	consists	 in	giving	some
concrete	interpretation	 to	the	abstract	mathematical	elements	of	the	problem.	For	instance,	if	 there	is	a
rectangular	 parallelepiped	 in	 the	 problem,	 the	 teacher	 may	 take	 the	 classroom	 in	 which	 he	 talks	 as
example	 (section	 8).	 In	 solid	 analytic	 geometry,	 a	 corner	 of	 the	 classroom	may	 serve	 as	 the	 origin	 of



coordinates,	 the	 floor	 and	 two	walls	 as	 coordinate	 planes,	 two	 horizontal	 edges	 of	 the	 room	 and	 one
vertical	 edge	as	 coordinate	 axes.	Explaining	 the	notion	of	 a	 surface	of	 revolution,	 the	 teacher	draws	a
curve	with	chalk	on	the	door	and	opens	it	slowly.	These	are	certainly	simple	tricks	but	nothing	should	be
omitted	 that	 has	 some	 chance	 to	 bring	 home	 mathematics	 to	 the	 students:	 Mathematics	 being	 a	 very
abstract	science	should	be	presented	very	concretely.

Subconscious	work.	One	evening	 I	wished	 to	discuss	with	a	 friend	a	 certain	author	but	 I	 could	not
remember	 the	 author’s	 name.	 I	 was	 annoyed,	 because	 I	 remembered	 fairly	 well	 one	 of	 his	 stories.	 I
remembered	 also	 some	 story	 about	 the	 author	 himself	 which	 I	 wanted	 to	 tell;	 I	 remembered,	 in	 fact,
everything	except	the	name.	Repeatedly,	I	tried	to	recollect	that	name	but	all	in	vain.	The	next	morning,	as
soon	as	I	thought	of	the	annoyance	of	the	evening	before,	the	name	occurred	to	me	without	any	effort.

The	 reader,	 very	 likely,	 remembers	 some	 similar	 experience	 of	 his	 own.	And,	 if	 he	 is	 a	 passionate
problem-solver,	he	has	probably	had	some	similar	experience	with	problems.	 It	often	happens	 that	you
have	no	success	at	all	with	a	problem;	you	work	very	hard	yet	without	 finding	anything.	But	when	you
come	back	to	the	problem	after	a	night’s	rest,	or	a	few	days’	interruption,	a	bright	idea	appears	and	you
solve	the	problem	easily.	The	nature	of	the	problem	matters	little;	a	forgotten	word,	a	difficult	word	from
a	crossword-puzzle,	 the	beginning	of	an	annoying	letter,	or	 the	solution	of	a	mathematical	problem	may
occur	in	this	way.

Such	happenings	give	the	impression	of	subconscious	work.	The	fact	is	that	a	problem,	after	prolonged
absence,	may	return	into	consciousness	essentially	clarified,	much	nearer	to	its	solution	than	it	was	when
it	 dropped	 out	 of	 consciousness.	 Who	 clarified	 it,	 who	 brought	 it	 nearer	 to	 the	 solution?	 Obviously,
oneself,	working	at	it	subconsciously.	It	is	difficult	to	give	any	other	answer;	although	psychologists	have
discovered	the	beginnings	of	another	answer	which	may	turn	out	some	day	to	be	more	satisfactory.

Whatever	may	or	may	not	be	the	merits	of	the	theory	of	subconscious	work,	it	is	certain	that	there	is	a
limit	beyond	which	we	should	not	force	the	conscious	reflection.	There	are	certain	moments	in	which	it	is
better	to	leave	the	problem	alone	for	a	while.	“Take	counsel	of	your	pillow”	is	an	old	piece	of	advice.
Allowing	an	 interval	of	 rest	 to	 the	problem	and	 to	ourselves,	we	may	obtain	more	 tomorrow	with	 less
effort.	 “If	 today	will	 not,	 tomorrow	may”	 is	 another	 old	 saying.	 But	 it	 is	 desirable	 not	 to	 set	 aside	 a
problem	to	which	we	wish	to	come	back	later	without	the	impression	of	some	achievement;	at	least	some
little	point	should	be	settled,	some	aspect	of	the	question	somewhat	elucidated	when	we	quit	working.

Only	 such	 problems	 come	 back	 improved	whose	 solution	we	 passionately	 desire,	 or	 for	which	we
have	worked	with	great	tension;	conscious	effort	and	tension	seem	to	be	necessary	to	set	the	subconscious
work	going.	At	any	rate,	it	would	be	too	easy	if	it	were	not	so;	we	could	solve	difficult	problems	just	by
sleeping	and	waiting	for	a	bright	idea.

Past	ages	regarded	a	sudden	good	idea	as	an	inspiration,	a	gift	of	the	gods.	You	must	deserve	such	a
gift	by	work,	or	at	least	by	a	fervent	wish.10

Symmetry	has	two	meanings,	a	more	usual,	particular,	geometric	meaning,	and	a	less	usual,	general,
logical	meaning.

Elementary	solid	geometry	considers	two	kinds	of	symmetry,	symmetry	with	respect	to	a	plane	(called
plane	of	symmetry),	and	symmetry	with	respect	to	a	point	(called	center	of	symmetry).	The	human	body
appears	 to	 be	 fairly	 symmetrical	 but	 in	 fact	 it	 is	 not;	 many	 interior	 organs	 are	 quite	 unsymmetrically
disposed.	A	statue	may	be	completely	symmetrical	with	respect	to	a	vertical	plane	so	that	its	two	halves
appear	completely	“interchangeable.”

In	a	more	general	acceptance	of	the	word,	a	whole	is	termed	symmetric	if	it	has	interchangeable	parts.
There	 are	 many	 kinds	 of	 symmetry;	 they	 differ	 in	 the	 number	 of	 interchangeable	 parts,	 and	 in	 the
operations	which	exchange	the	parts.	Thus,	a	cube	has	high	symmetry;	its	6	faces	are	interchangeable	with



each	other,	and	so	are	its	8	vertices,	and	so	are	its	12	edges.	The	expression

yz	+	zx	+	xy

is	symmetric;	any	two	of	the	three	letters	x,	y,	z	can	be	interchanged	without	changing	the	expression.
Symmetry,	in	a	general	sense,	is	important	for	our	subject.	If	a	problem	is	symmetric	in	some	ways	we

may	derive	some	profit	from	noticing	its	interchangeable	parts	and	it	often	pays	to	treat	those	parts	which
play	the	same	role	in	the	same	fashion	(see	AUXILIARY	ELEMENTS,	3).

Try	 to	 treat	 symmetrically	what	 is	 symmetrical,	 and	 do	 not	 destroy	wantonly	 any	 natural	 symmetry.
However,	we	are	sometimes	compelled	to	treat	unsymmetrically	what	is	naturally	symmetrical.	A	pair	of
gloves	is	certainly	symmetrical;	nevertheless,	nobody	handles	the	pair	quite	symmetrically,	nobody	puts
on	both	gloves	at	the	same	time,	but	one	after	the	other.

Symmetry	may	also	be	useful	in	checking	results;	see	section	14.

Terms,	old	and	new,	 describing	 the	 activity	 of	 solving	 problems	 are	 often	 ambiguous.	 The	 activity
itself	 is	 familiar	 to	 everybody	and	 it	 is	 often	discussed	but,	 as	other	mental	 activities,	 it	 is	 difficult	 to
describe.	In	the	absence	of	a	systematic	study	there	are	no	technical	terms	to	describe	it,	and	certain	usual
half-technical	 terms	often	add	 to	 the	confusion	because	 they	are	used	 in	different	meanings	by	different
authors.

The	 following	short	 list	 includes	a	 few	new	 terms	used	and	a	 few	old	 terms	avoided	 in	 the	present
study,	and	also	some	old	terms	retained	despite	their	ambiguity.

The	 reader	may	be	confused	by	 the	 following	discussion	of	 terminology	unless	his	notions	are	well
anchored	in	examples.

1.	Analysis	is	neatly	defined	by	PAPPUS,	and	it	is	a	useful	term,	describing	a	typical	way	of	devising	a
plan,	 starting	 from	 the	 unknown	 (or	 the	 conclusion)	 and	 working	 backwards,	 toward	 the	 data	 (or	 the
hypothesis).	Unfortunately,	the	word	has	acquired	very	different	meanings	(for	instance,	of	mathematical,
chemical,	logical	analysis)	and	therefore,	it	is	regretfully	avoided	in	the	present	study.

2.	Condition	links	the	unknown	of	a	“problem	to	find”	to	the	data	(see	PROBLEMS	TO	FIND,	PROBLEMS	TO
PROVE,	3).	In	this	meaning,	it	is	a	clear,	useful	and	unavoidable	term.	It	is	often	necessary	to	decompose
the	condition	into	several	parts	[into	parts	(I)	and	(II)	in	the	examples	DECOMPOSING	AND	RECOMBINING,	7,
8].	Now,	 each	 part	 of	 the	 condition	 is	 usually	 called	a	 condition.	 This	 ambiguity	which	 is	 sometimes
embarrassing	could	be	easily	avoided	by	introducing	some	technical	term	to	denote	the	parts	of	the	whole
condition;	for	instance,	such	a	part	could	be	called	a	“clause.”

3.	 Hypothesis	 denotes	 an	 essential	 part	 of	 a	 mathematical	 theorem	 of	 the	 more	 usual	 kind	 (see
PROBLEMS	TO	FIND,	PROBLEMS	TO	PROVE,	4).	The	term,	in	this	meaning,	is	perfectly	clear	and	satisfactory.
The	difficulty	 is	 that	each	part	of	 the	hypothesis	 is	also	called	a	hypothesis	 so	 that	 the	hypothesis	may
consist	of	several	hypotheses.	The	remedy	would	be	to	call	each	part	of	the	whole	hypothesis	a	“clause,”
or	something	similar.	(Compare	the	foregoing	remark	on	“condition.”)

4.	Principal	parts	of	a	problem	are	defined	in	PROBLEMS	TO	FIND,	PROBLEMS	TO	PROVE,	3,	4.
5.	 Problem	 to	 find,	 problem	 to	 prove	 are	 a	 pair	 of	 new	 terms,	 introduced	 regretfully	 to	 replace

historical	 terms	 whose	 meaning,	 however,	 is	 confused	 beyond	 redemption	 by	 current	 usage.	 In	 Latin
versions	 of	Greek	mathematical	 texts,	 the	 common	name	 for	 both	 kinds	 of	 problems	 is	“propositio”;	 a
“problem	 to	 find”	 is	 called	 “problema,”	 and	 a	 “problem	 to	 prove”	 “theorema.”	 In	 old-fashioned
mathematical	language,	the	words	proposition,	problem,	theorem	have	still	this	“Euclidean”	meaning,	but
this	is	completely	changed	in	modern	mathematical	language;	this	justifies	the	introduction	of	new	terms.

6.	Progressive	reasoning	was	used	in	various	meanings	by	various	authors,	and	in	the	old	meaning	of
“synthesis”	(see	9)	by	some	authors.	The	latter	usage	is	defensible	but	the	term	is	avoided	here.



7.	Regressive	reasoning	was	used	in	the	old	meaning	of	“analysis”	by	some	authors	(compare	1,	6).
The	term	is	defensible	but	avoided	here.

8.	Solution	is	a	completely	clear	term	if	taken	in	its	purely	mathematical	meaning;	it	denotes	any	object
satisfying	the	condition	of	a	“problem	to	find.”	Thus,	the	solutions	of	the	equation	x2	−	3x	+	2	=	0	are	its
roots,	 the	 numbers	 1	 and	 2.	 Unfortunately,	 the	 word	 has	 also	 other	 meanings	 which	 are	 not	 purely
mathematical	and	which	are	used	by	mathematicians	along	with	its	mathematical	meaning.	Solution	may
also	mean	the	“process	of	solving	the	problem”	or	the	“work	done	in	solving	the	problem”;	we	use	the
word	in	this	meaning	when	we	talk	about	a	“difficult	solution.”	Solution	may	also	mean	the	result	of	the
work	done	in	solving	the	problem;	we	may	use	the	word	in	this	meaning	when	we	talk	about	a	“beautiful
solution.”	Now,	 it	may	happen	 that	we	have	 to	 talk	 in	 the	same	sentence	about	 the	object	satisfying	 the
condition	of	the	problem,	about	the	work	of	obtaining	it,	and	about	the	result	of	this	work;	if	we	yield	to
the	temptation	to	call	all	three	things	“solution”	the	sentence	cannot	be	too	clear.

9.	Synthesis	is	used	by	PAPPUS	in	a	well	defined	meaning	which	would	deserve	to	be	conserved.	The
term	 is,	 however,	 regretfully	 avoided	 in	 the	 present	 study,	 for	 the	 same	 reasons	 as	 its	 counterpart
“analysis”	(see	under	1).

Test	 by	 dimension	 is	 a	 well-known,	 quick	 and	 efficient	 means	 to	 check	 geometrical	 or	 physical
formulas.

1.	In	order	to	recall	the	operation	of	the	test,	let	us	consider	the	frustum	of	a	right	circular	cone.	Let

R	be	the	radius	of	the	lower	base,
r	the	radius	of	the	upper	base,
h	the	altitude	of	the	frustum,
S	the	area	of	the	lateral	surface	of	the	frustum.

If	R,	r,	h	are	given,	S	is	visibly	determined.	We	find	the	expression

to	which	we	wish	to	apply	the	test	by	dimension.
The	dimension	of	a	geometric	quantity	is	easily	visible.	Thus,	R,	r,	h	are	lengths,	they	are	measured	in

centimeters	if	we	use	scientific	units,	their	dimension	is	cm.	The	area	S	is	measured	in	square	centimeters,
its	dimension	is	cm2.	Now,	π	=	3.14159	.	 .	 .	 is	a	mere	number;	 if	we	wish	to	ascribe	a	dimension	to	a
purely	numerical	quantity	it	must	be	cm0	=	1.

Each	term	of	a	sum	must	have	the	same	dimension	which	is	also	the	dimension	of	the	sum.	Thus,	R,	r,
and	R	+	r	have	the	same	dimension,	namely	cm.	The	two	terms	(R	−	r)2	and	h2	have	the	same	dimension
(as	they	must),	cm2.

The	dimension	of	a	product	is	the	product	of	the	dimensions	of	its	factors,	and	there	is	a	similar	rule
about	 powers.	 Replacing	 the	 quantities	 by	 their	 dimensions	 on	 both	 sides	 of	 the	 formula	 that	 we	 are
testing,	we	obtain

This	being	visibly	so,	the	test	could	not	detect	any	error	in	the	formula.	The	formula	passed	the	test.
For	other	examples,	see	section	14,	and	CAN	YOU	CHECK	THE	RESULT?	2.
2.	We	may	apply	the	test	by	dimension	to	the	final	result	of	a	problem	or	to	intermediary	results,	to	our

own	work	or	to	the	work	of	others	(very	suitable	in	tracing	mistakes	in	examination	papers),	and	also	to



formulas	that	we	recollect	and	to	formulas	that	we	guess.
If	you	 recollect	 the	 formulas	4πr2	and	4πr3/3	 for	 the	 area	and	 the	volume	of	 the	 sphere,	but	 are	not

quite	sure	which	is	which,	the	test	by	dimension	easily	removes	the	doubt.
3.	The	test	by	dimension	is	even	more	important	in	physics	than	in	geometry.
Let	us	consider	a	“simple”	pendulum,	that	is,	a	small	heavy	body	suspended	by	a	wire	whose	length

we	regard	as	invariable	and	whose	weight	we	regard	as	negligible.	Let	l	stand	for	the	length	of	the	wire,
g	for	the	gravitational	acceleration,	and	T	for	the	period	of	the	pendulum.

Mechanical	 considerations	 show	 that	 T	 depends	 on	 l	 and	 g	 alone.	 But	 what	 is	 the	 form	 of	 the
dependence?	We	may	remember	or	guess	that

T	=	clmgn

where	 c,	 m,	 n	 are	 certain	 numerical	 constants.	 That	 is,	 we	 suppose	 that	 T	 is	 proportional	 to	 certain
powers,	lm,	gn,	of	l	and	g.

We	 look	 at	 the	 dimensions.	 As	 T	 is	 a	 time,	 it	 is	 measured	 in	 seconds,	 its	 dimension	 is	 sec.	 The
dimension	of	the	length	l	is	cm,	the	dimension	of	the	acceleration	g	is	cm	sec−2,	and	the	dimension	of	the
numerical	constant	c	is	1.	The	test	by	dimension	yields	the	equation

sec	=	1	·	(cm)m	(cm	sec−2)n

or

sec	=	(cm)m+n	sec−2n.

Now,	we	must	have	the	same	powers	of	the	fundamental	units	cm	and	sec	on	both	sides,	and	thus	we
obtain

0	=	m	+	n					1	=	−2n

and	hence

Therefore,	the	formula	for	the	period	T	must	have	the	form

The	 test	 by	 dimension	 yields	 much	 in	 this	 case	 but	 it	 cannot	 yield	 everything.	 First,	 it	 gives	 no
information	about	the	value	of	the	constant	c	(which	is,	in	fact,	2π).	Second,	it	gives	no	information	about
the	 limits	 of	 validity;	 the	 formula	 is	 valid	 only	 for	 small	 oscillations	 of	 the	 pendulum	 and	 only
approximately	 (it	 is	 exact	 for	 “infinitely	 small”	 oscillations).	 In	 spite	 of	 these	 limitations,	 there	 is	 no
doubt	 that	 the	 consideration	 of	 the	 dimensions	 has	 allowed	 us	 to	 foresee	 quickly	 and	 with	 the	 most
elementary	means	an	essential	part	of	a	result	whose	exhaustive	treatment	demands	much	more	advanced
means.	And	this	is	so	in	many	similar	cases.

The	future	mathematician	should	be	a	clever	problem-solver;	but	to	be	a	clever	problem-solver	is
not	enough.	In	due	time,	he	should	solve	significant	mathematical	problems;	and	first	he	should	find	out



for	which	kind	of	problems	his	native	gift	is	particularly	suited.
For	him,	the	most	important	part	of	the	work	is	to	look	back	at	the	completed	solution.	Surveying	the

course	 of	 his	 work	 and	 the	 final	 shape	 of	 the	 solution,	 he	 may	 find	 an	 unending	 variety	 of	 things	 to
observe.	He	may	meditate	upon	the	difficulty	of	the	problem	and	about	the	decisive	idea;	he	may	try	to	see
what	hampered	him	and	what	helped	him	finally.	He	may	look	out	for	simple	intuitive	ideas:	Can	you	see
it	at	a	glance?	He	may	compare	and	develop	various	methods:	Can	you	derive	the	result	differently?	He
may	try	to	clarify	his	present	problem	by	comparing	it	to	problems	formerly	solved;	he	may	try	to	invent
new	problems	which	he	can	solve	on	the	basis	of	his	just	completed	work:	Can	you	use	the	result,	or	the
method,	 for	 some	 other	 problem?	Digesting	 the	 problems	 he	 solved	 as	 completely	 as	 he	 can,	 he	may
acquire	well	ordered	knowledge,	ready	to	use.

The	future	mathematician	learns,	as	does	everybody	else,	by	imitation	and	practice.	He	should	look	out
for	the	right	model	to	imitate.	He	should	observe	a	stimulating	teacher.	He	should	compete	with	a	capable
friend.	Then,	what	may	be	the	most	important,	he	should	read	not	only	current	textbooks	but	good	authors
till	he	finds	one	whose	ways	he	is	naturally	inclined	to	imitate.	He	should	enjoy	and	seek	what	seems	to
him	simple	or	instructive	or	beautiful.	He	should	solve	problems,	choose	the	problems	which	are	in	his
line,	meditate	upon	their	solution,	and	invent	new	problems.	By	these	means,	and	by	all	other	means,	he
should	endeavor	to	make	his	first	important	discovery:	he	should	discover	his	likes	and	his	dislikes,	his
taste,	his	own	line.

The	intelligent	problem-solver	often	asks	himself	questions	similar	to	those	contained	in	our	list.	He,
perhaps,	discovered	questions	of	this	sort	by	himself;	or,	having	heard	such	a	question	from	somebody,	he
discovered	 its	 proper	 use	 by	 himself.	 He	 is	 possibly	 not	 conscious	 at	 all	 that	 he	 repeats	 the	 same
stereotyped	question	again	and	again.	Or	the	question	is	his	particular	pet;	he	knows	that	the	question	is
part	of	his	mental	attitude	appropriate	in	such	and	such	a	phase	of	the	work,	and	he	summons	up	the	right
attitude	by	asking	the	right	question.

The	 intelligent	 problem-solver	 may	 find	 the	 questions	 and	 suggestions	 of	 our	 list	 useful.	 He	 may
understand	quite	well	 the	explanations	and	examples	 illustrating	a	certain	question,	he	may	suspect	 the
proper	use	of	the	question;	but	he	cannot	attain	real	understanding	unless	he	comes	across	the	procedure
that	the	question	tries	to	provoke	in	his	own	work	and,	by	having	experienced	its	usefulness,	discovers	the
proper	use	of	the	question	for	himself.

The	 intelligent	problem-solver	 should	be	prepared	 to	 ask	 all	 questions	of	 the	 list	 but	he	 should	 ask
none	unless	 he	 is	 prompted	 to	 do	 so	 by	 careful	 consideration	 of	 the	 problem	 at	 hand	 and	 by	 his	 own
unprejudiced	judgment.	In	fact,	he	must	recognize	by	himself	whether	the	present	situation	is	sufficiently
similar	or	not	to	some	other	situation	in	which	he	saw	the	question	successfully	applied.

The	intelligent	problem-solver	tries	first	of	all	to	understand	the	problem	as	fully	and	as	clearly	as	he
can.	 Yet	 understanding	 alone	 is	 not	 enough;	 he	 must	 concentrate	 upon	 the	 problem,	 he	 must	 desire
earnestly	to	obtain	its	solution.	If	he	cannot	summon	up	real	desire	for	solving	the	problem	he	would	do
better	 to	 leave	 it	 alone.	 The	 open	 secret	 of	 real	 success	 is	 to	 throw	 your	whole	 personality	 into	 your
problem.

The	intelligent	reader	of	a	mathematical	book	desires	two	things:
First,	to	see	that	the	present	step	of	the	argument	is	correct.
Second,	to	see	the	purpose	of	the	present	step.
The	intelligent	listener	to	a	mathematical	lecture	has	the	same	wishes.	If	he	cannot	see	that	the	present

step	of	the	argument	is	correct	and	even	suspects	that	it	is,	possibly,	incorrect,	he	may	protest	and	ask	a
question.	If	he	cannot	see	any	purpose	in	the	present	step,	nor	suspect	any	reason	for	it,	he	usually	cannot
even	formulate	a	clear	objection,	he	does	not	protest,	he	is	just	dismayed	and	bored,	and	loses	the	thread



of	the	argument.
The	 intelligent	 teacher	 and	 the	 intelligent	 author	 of	 textbooks	 should	 bear	 these	 points	 in	mind.	 To

write	and	speak	correctly	is	certainly	necessary;	but	it	is	not	sufficient.	A	derivation	correctly	presented
in	the	book	or	on	the	blackboard	may	be	inaccessible	and	uninstructive,	if	the	purpose	of	the	successive
steps	is	incomprehensible,	if	the	reader	or	listener	cannot	understand	how	it	was	humanly	possible	to	find
such	an	argument,	if	he	is	not	able	to	derive	any	suggestion	from	the	presentation	as	to	how	he	could	find
such	an	argument	by	himself.

The	questions	and	suggestions	of	our	list	may	be	useful	to	the	author	and	to	the	teacher	in	emphasizing
the	purpose	and	the	motives	of	his	argument.	Particularly	useful	in	this	respect	is	the	question:	DID	WE	USE
ALL	THE	DATA?	The	author	or	 the	 teacher	may	 show	by	 this	question	a	good	 reason	 for	 considering	 the
datum	that	has	not	been	used	heretofore.	The	reader	or	the	listener	can	use	the	same	question	in	order	to
understand	the	author’s	or	the	teacher’s	reason	for	considering	such	and	such	an	element,	and	he	may	feel
that,	asking	this	question,	he	could	have	discovered	this	step	of	the	argument	by	himself.

The	traditional	mathematics	professor	of	the	popular	legend	is	absentminded.	He	usually	appears	in
public	with	a	 lost	umbrella	 in	each	hand.	He	prefers	 to	face	the	blackboard	and	to	turn	his	back	on	the
class.	He	writes	a,	he	says	b,	he	means	c;	but	it	should	be	d.	Some	of	his	sayings	are	handed	down	from
generation	to	generation.

“In	order	to	solve	this	differential	equation	you	look	at	it	till	a	solution	occurs	to	you.”
“This	principle	is	so	perfectly	general	that	no	particular	application	of	it	is	possible.”
“Geometry	is	the	art	of	correct	reasoning	on	incorrect	figures.”
“My	method	to	overcome	a	difficulty	is	to	go	round	it.”
“What	is	the	difference	between	method	and	device?	A	method	is	a	device	which	you	use	twice.”
After	 all,	 you	 can	 learn	 something	 from	 this	 traditional	mathematics	 professor.	 Let	 us	 hope	 that	 the

mathematics	teacher	from	whom	you	cannot	learn	anything	will	not	become	traditional.

Variation	 of	 the	 problem.	 An	 insect	 (as	 mentioned	 elsewhere)	 tries	 to	 escape	 through	 the
windowpane,	tries	the	same	hopeless	thing	again	and	again,	and	does	not	 try	the	next	window	which	is
open	and	through	which	it	came	into	the	room.	A	mouse	may	act	more	intelligently;	caught	in	the	trap,	he
tries	to	squeeze	through	between	two	bars,	 then	between	the	next	two	bars,	 then	between	other	bars;	he
varies	his	trials,	he	explores	various	possibilities.	A	man	is	able,	or	should	be	able,	to	vary	his	trials	still
more	intelligently,	to	explore	the	various	possibilities	with	more	understanding,	to	learn	by	his	errors	and
shortcomings.	“Try,	 try	again”	 is	popular	advice.	 It	 is	good	advice.	The	 insect,	 the	mouse,	and	 the	man
follow	it;	but	if	one	follows	it	with	more	success	than	the	others	it	is	because	he	varies	his	problem	more
intelligently.

1.	At	the	end	of	our	work,	when	we	have	obtained	the	solution,	our	conception	of	the	problem	will	be
fuller	and	more	adequate	than	it	was	at	the	outset.	Desiring	to	proceed	from	our	initial	conception	of	the
problem	 to	 a	 more	 adequate,	 better	 adapted	 conception,	 we	 try	 various	 standpoints	 and	 we	 view	 the
problem	from	different	sides.

Success	in	solving	the	problem	depends	on	choosing	the	right	aspect,	on	attacking	the	fortress	from	its
accessible	side.	In	order	to	find	out	which	aspect	is	the	right	one,	which	side	is	accessible,	we	try	various
sides	and	aspects,	we	vary	the	problem.

2.	Variation	 of	 the	 problem	 is	 essential.	 This	 fact	 can	 be	 explained	 in	 various	ways.	 Thus,	 from	 a
certain	 point	 of	 view,	 progress	 in	 solving	 the	 problem	 appears	 as	 mobilization	 and	 organization	 of
formerly	acquired	knowledge.	We	have	to	extract	from	our	memory	and	to	work	into	the	problem	certain
elements.	Now,	variation	of	the	problem	helps	us	to	extract	such	elements.	How?

We	remember	things	by	a	kind	of	“action	by	contact,”	called	“mental	association”;	what	we	have	in	our



mind	at	present	tends	to	recall	what	was	in	contact	with	it	at	some	previous	occasion.	(There	is	no	space
and	 no	 need	 to	 state	more	 neatly	 the	 theory	 of	 association,	 or	 to	 discuss	 its	 limitations.)	Varying	 the
problem,	we	bring	in	new	points,	and	so	we	create	new	contacts,	new	possibilities	of	contacting	elements
relevant	to	our	problem.

3.	We	cannot	hope	to	solve	any	worth-while	problem	without	intense	concentration.	But	we	are	easily
tired	by	intense	concentration	of	our	attention	upon	the	same	point.	In	order	to	keep	the	attention	alive,	the
object	on	which	it	is	directed	must	unceasingly	change.

If	 our	work	 progresses,	 there	 is	 something	 to	 do,	 there	 are	 new	 points	 to	 examine,	 our	 attention	 is
occupied,	our	interest	is	alive.	But	if	we	fail	to	make	progress,	our	attention	falters,	our	interest	fades,	we
get	 tired	 of	 the	 problem,	 our	 thoughts	 begin	 to	 wander,	 and	 there	 is	 danger	 of	 losing	 the	 problem
altogether.	To	escape	from	this	danger	we	have	to	set	ourselves	a	new	question	about	the	problem.

The	new	question	unfolds	untried	possibilities	of	contact	with	our	previous	knowledge,	it	revives	our
hope	of	making	useful	contacts.	The	new	question	reconquers	our	 interest	by	varying	 the	problem,	 by
showing	some	new	aspect	of	it.

4.	Example.	Find	the	volume	of	the	frustum	of	a	pyramid	with	square	base,	being	given	the	side	of	the
lower	base	a,	the	side	of	the	upper	base	b,	and	the	altitude	of	the	frustum	h.

The	 problem	may	 be	 proposed	 to	 a	 class	 familiar	 with	 the	 formulas	 for	 the	 volume	 of	 prism	 and
pyramid.	 If	 the	students	do	not	come	forward	with	some	 idea	of	 their	own,	 the	 teacher	may	begin	with
varying	the	data	of	the	problem.	We	start	from	a	frustum	with	a	>	b.	What	happens	when	b	increases	till
it	 becomes	 equal	 to	a?	 The	 frustum	 becomes	 a	 prism	 and	 the	 volume	 in	 question	 becomes	a2h.	What
happens	when	b	decreases	till	it	becomes	equal	to	0?	The	frustum	becomes	a	pyramid	and	the	volume	in
question	becomes	a2h/3.

This	variation	of	the	data	contributes,	first	of	all,	to	the	interest	of	the	problem.	Then,	it	may	suggest
using,	 in	 some	way	 or	 other,	 the	 results	 quoted	 about	 prism	 and	 pyramid.	At	 any	 rate,	we	 have	 found
definite	properties	of	the	final	result;	the	final	formula	must	be	such	that	it	reduces	to	a2h	for	b	=	a	and	to
a2h/3	 for	 b	 =	 0.	 It	 is	 an	 advantage	 to	 foresee	 properties	 of	 the	 result	 we	 are	 trying	 to	 obtain.	 Such
properties	may	give	valuable	suggestions	and,	in	any	case,	when	we	have	found	the	final	formula	we	shall
be	able	to	test	it.	We	have	thus,	in	advance,	an	answer	to	the	question:	CAN	YOU	CHECK	THE	RESULT?	(See
there,	under	2.)

5.	Example.	Construct	a	trapezoid	being	given	its	four	sides	a,	b,	c,	d.
Let	a	be	the	lower	base	and	c	the	upper	base;	a	and	c	are	parallel	but	unequal,	b	and	d	are	not	parallel.

If	there	is	no	other	idea,	we	may	begin	with	varying	the	data.
We	start	from	a	trapezoid	with	a	>	c.	What	happens	when	c	decreases	till	it	becomes	equal	to	0?	The

trapezoid	 degenerates	 into	 a	 triangle.	 Now	 a	 triangle	 is	 a	 familiar	 and	 simple	 figure,	 which	 we	 can
construct	from	various	data;	there	could	be	some	advantage	in	introducing	this	triangle	into	the	figure.	We
do	so	by	drawing	just	one	auxiliary	line,	a	diagonal	of	the	trapezoid	(Fig.	21).	Examining	the	triangle	we
find	however	that	it	is	scarcely	useful;	we	know	two	sides,	a	and	d,	but	we	should	have	three	data.

Let	us	 try	something	else.	What	happens	when	c	 increases	 till	 it	becomes	equal	 to	a?	The	 trapezoid
becomes	a	parallelogram.	Could	we	use	it?	A	little	examination	(see	Fig.	22)	directs	our	attention	to	the
triangle	which	we	have	added	to	the	original	trapezoid	when	drawing	the	parallelogram.	This	triangle	is
easily	constructed;	we	know	three	data,	its	three	sides	b,	d,	and	a	−	c.



FIG.	21

FIG.	22

Varying	 the	original	problem	(construction	of	 the	 trapezoid)	we	have	been	 led	 to	a	more	accessible
auxiliary	problem	(construction	of	the	triangle).	Using	the	result	of	the	auxiliary	problem	we	easily	solve
our	original	problem	(we	have	to	complete	the	parallelogram).

Our	example	is	typical.	It	is	also	typical	that	our	first	attempt	failed.	Looking	back	at	it,	we	may	see
however	that	that	first	attempt	was	not	so	useless.	There	was	some	idea	in	it;	in	particular,	it	gave	us	an
opportunity	to	think	of	the	construction	of	a	triangle	as	means	to	our	end.	In	fact,	we	arrived	at	our	second,
successful	trial	by	modifying	our	first,	unsuccessful	trial.	We	varied	c;	we	first	tried	to	decrease	it,	then	to
increase	it.

6.	As	in	the	foregoing	example,	we	often	have	to	try	various	modifications	of	the	problem.	We	have	to
vary,	to	restate,	to	transform	it	again	and	again	till	we	succeed	eventually	in	finding	something	useful.	We
may	learn	by	failure;	there	may	be	some	good	idea	in	an	unsuccessful	trial,	and	we	may	arrive	at	a	more
successful	trial	by	modifying	an	unsuccessful	one.	What	we	attain	after	various	trials	is	very	often,	as	in
the	foregoing	example,	a	more	accessible	auxiliary	problem.

7.	There	 are	 certain	modes	 of	 varying	 the	 problem	which	 are	 typically	 useful,	 as	 going	back	 to	 the
DEFINITION,	 DECOMPOSING	 AND	 RECOMBINING,	 introducing	 AUXILIARY	 ELEMENTS,	 GENERALIZATION,
SPECIALIZATION,	and	the	use	of	ANALOGY.

8.	What	 we	 said	 a	 while	 ago	 (under	 3)	 about	 new	 questions	 which	may	 reconquer	 our	 interest	 is
important	for	the	proper	use	of	our	list.

A	 teacher	may	 use	 the	 list	 to	 help	 his	 students.	 If	 the	 student	 progresses,	 he	 needs	 no	 help	 and	 the
teacher	should	not	ask	him	any	questions,	but	allow	him	to	work	alone	which	is	obviously	better	for	his
independence.	But	the	teacher	should,	of	course,	try	to	find	some	suitable	question	or	suggestion	to	help
him	when	he	gets	stuck.	Because	 then	 there	 is	danger	 that	 the	student	will	get	 tired	of	his	problem	and
drop	it,	or	lose	interest	and	make	some	stupid	blunder	out	of	sheer	indifference.

We	may	use	the	list	in	solving	our	own	problems.	To	use	it	properly	we	proceed	as	in	the	former	case.
When	our	progress	is	satisfactory,	when	new	remarks	emerge	spontaneously,	it	would	be	simply	stupid	to
hamper	 our	 spontaneous	 progress	 by	 extraneous	 questions.	 But	 when	 our	 progress	 is	 blocked,	 when
nothing	occurs	to	us,	there	is	danger	that	we	may	get	tired	of	our	problem.	Then	it	is	time	to	think	of	some



general	idea	that	could	be	helpful,	of	some	question	or	suggestion	of	the	list	that	might	be	suitable.	And
any	question	is	welcome	that	has	some	chance	of	showing	a	new	aspect	of	the	problem;	it	may	reconquer
our	interest,	it	may	keep	us	working	and	thinking.

What	is	the	unknown?	What	is	required?	What	do	you	want?	What	are	you	supposed	to	seek?
What	are	the	data?	What	is	given?	What	have	you?
What	is	the	condition?	By	what	condition	is	the	unknown	linked	to	the	data?
These	questions	may	be	used	by	the	teacher	to	test	the	understanding	of	the	problem;	the	student	should

be	able	 to	answer	 them	clearly.	Moreover,	 they	direct	 the	student’s	attention	 to	 the	principal	parts	of	a
“problem	 to	 find,”	 the	 unknown,	 the	 data,	 the	 condition.	 As	 the	 consideration	 of	 these	 parts	 may	 be
necessary	 again	 and	 again,	 the	 questions	 may	 be	 often	 repeated	 in	 the	 later	 phases	 of	 the	 solution.
(Examples	in	sections	8,	10,	18,	20;	SETTING	UP	EQUATIONS,	3,	4;	PRACTICAL	 PROBLEMS,	1;	PUZZLES;	and
elsewhere.)

The	questions	are	of	the	greatest	importance	for	the	problem-solver.	He	checks	his	own	understanding
of	the	problem,	he	focuses	his	attention	on	this	or	that	principal	part	of	the	problem.	The	solution	consists
essentially	in	linking	the	unknown	to	the	data.	Therefore,	the	problem-solver	has	to	focus	those	elements
again	and	again,	asking:	What	is	the	unknown?	What	are	the	data?

The	 problem	 may	 have	 many	 unknowns,	 or	 the	 condition	 may	 have	 various	 parts	 which	 must	 be
considered	separately,	or	 it	may	be	desirable	 to	consider	some	datum	by	 itself.	Therefore,	we	may	use
various	modifications	of	our	questions,	as:	What	are	the	unknowns?	What	is	the	first	datum?	What	is	the
second	datum?	What	are	the	various	parts	of	the	condition?	What	is	the	first	clause	of	the	condition?

The	 principal	 parts	 of	 a	 “problem	 to	 prove”	 are	 the	 hypothesis	 and	 the	 conclusion,	 and	 the
corresponding	 questions	 are:	What	 is	 the	 hypothesis?	 What	 is	 the	 conclusion?	 We	 may	 need	 some
variation	 of	 verbal	 expression	 or	 modification	 of	 these	 frequently	 useful	 questions	 as:	 What	 do	 you
assume?	What	are	the	various	parts	of	your	assumption?	(Example	in	section	19.)

Why	proofs?	There	 is	 a	 traditional	 story	 about	Newton:	As	 a	 young	 student,	 he	 began	 the	 study	of
geometry,	as	was	usual	in	his	time,	with	the	reading	of	the	Elements	of	Euclid.	He	read	the	theorems,	saw
that	they	were	true,	and	omitted	the	proofs.	He	wondered	why	anybody	should	take	pains	to	prove	things
so	evident.	Many	years	later,	however,	he	changed	his	opinion	and	praised	Euclid.

The	story	may	be	authentic	or	not,	yet	 the	question	remains:	Why	should	we	learn,	or	 teach,	proofs?
What	is	preferable:	no	proof	at	all,	or	proofs	for	everything,	or	some	proofs?	And,	if	only	some	proofs,
which	proofs?

1.	Complete	proofs.	For	a	logician	of	a	certain	sort	only	complete	proofs	exist.	What	intends	to	be	a
proof	must	 leave	 no	 gaps,	 no	 loopholes,	 no	 uncertainty	whatever,	 or	 else	 it	 is	 no	 proof.	 Can	we	 find
complete	proofs	according	to	such	a	high	standard	in	everyday	life,	or	in	legal	procedure,	or	in	physical
science?	Scarcely.	Thus,	 it	 is	 difficult	 to	 understand	 how	we	 could	 acquire	 the	 idea	 of	 such	 a	 strictly
complete	proof.

We	may	say,	with	a	 little	exaggeration,	 that	humanity	 learned	 this	 idea	 from	one	man	and	one	book:
from	Euclid	and	his	Elements.	In	any	case,	the	study	of	the	elements	of	plane	geometry	yields	still	the	best
opportunity	to	acquire	the	idea	of	rigorous	proof.

Let	us	 take	as	an	example	 the	proof	of	 the	 theorem:	 In	any	 triangle,	 the	sum	of	 the	 three	angles	 is
equal	to	two	right	angles.11	Fig.	23,	which	is	an	inalienable	mental	property	of	most	of	us,	needs	little
explanation.	There	is	a	line	through	the	vertex	A	parallel	to	the	side	BC.



FIG.	23

The	angles	of	the	triangle	at	B	and	at	C	are	equal	to	certain	angles	at	A,	as	 is	emphasized	in	 the	figure,
since	alternate	angles	are	equal	in	general.	The	three	angles	of	the	triangle	are	equal	to	three	angles	with	a
common	vertex	A,	forming	a	straight	angle,	or	two	right	angles;	and	so	the	theorem	is	proved.

If	a	student	has	gone	 through	his	mathematics	classes	without	having	really	understood	a	few	proofs
like	the	foregoing	one,	he	is	entitled	to	address	a	scorching	reproach	to	his	school	and	to	his	teachers.	In
fact,	 we	 should	 distinguish	 between	 things	 of	 more	 and	 less	 importance.	 If	 the	 student	 failed	 to	 get
acquainted	with	this	or	that	particular	geometric	fact,	he	did	not	miss	so	much;	he	may	have	little	use	for
such	facts	 in	 later	 life.	But	 if	he	failed	to	get	acquainted	with	geometric	proofs,	he	missed	the	best	and
simplest	 examples	 of	 true	 evidence	 and	 he	 missed	 the	 best	 opportunity	 to	 acquire	 the	 idea	 of	 strict
reasoning.	Without	this	idea,	he	lacks	a	true	standard	with	which	to	compare	alleged	evidence	of	all	sorts
aimed	at	him	in	modern	life.

In	 short,	 if	 general	 education	 intends	 to	 bestow	 on	 the	 student	 the	 ideas	 of	 intuitive	 evidence	 and
logical	reasoning,	it	must	reserve	a	place	for	geometric	proofs.

2.	Logical	system.	Geometry,	as	presented	in	Euclid’s	Elements,	is	not	a	mere	collection	of	facts	but	a
logical	 system.	 The	 axioms,	 definitions,	 and	 propositions	 are	 not	 listed	 in	 a	 random	 sequence	 but
disposed	 in	 accomplished	 order.	 Each	 proposition	 is	 so	 placed	 that	 it	 can	 be	 based	 on	 the	 foregoing
axioms,	definitions,	and	propositions.	We	may	regard	the	disposition	of	the	propositions	as	Euclid’s	main
achievement	and	their	logical	system	as	the	main	merit	of	the	Elements.

Euclid’s	geometry	is	not	only	a	logical	system	but	it	is	the	first	and	greatest	example	of	such	a	system,
which	other	sciences	have	tried,	and	are	still	trying,	to	imitate.	Should	other	sciences—especially	those
very	 far	 from	 geometry,	 as	 psychology,	 or	 jurisprudence—imitate	 Euclid’s	 rigid	 logic?	 This	 is	 a
debatable	question;	but	nobody	can	take	part	in	the	debate	with	competence	who	is	not	acquainted	with
the	Euclidean	system.

Now,	 the	 system	 of	 geometry	 is	 cemented	with	 proofs.	 Each	 proposition	 is	 linked	 to	 the	 foregoing
axioms,	definitions,	and	propositions	by	a	proof.	Without	understanding	such	proofs	we	cannot	understand
the	very	essence	of	the	system.

In	short,	if	general	education	intends	to	bestow	on	the	student	the	idea	of	logical	system,	it	must	reserve
a	place	for	geometric	proofs.

3.	 Mnemotechnic	 system.	 The	 author	 does	 not	 think	 that	 the	 ideas	 of	 intuitive	 evidence,	 strict
reasoning,	and	 logical	system	are	superfluous	 for	anybody.	There	may	be	cases,	however,	 in	which	 the
study	of	these	ideas	is	not	considered	absolutely	necessary,	owing	to	lack	of	time,	or	for	other	reasons.
Yet	even	in	such	cases	proofs	may	be	desirable.

Proofs	yield	evidence;	in	so	doing,	they	hold	together	the	logical	system;	and	they	help	us	to	remember
the	various	items	held	together.	Take	the	example	discussed	above,	in	connection	with	Fig.	23.	This	figure
renders	evident	the	fact	that	the	sum	of	the	angles	in	a	triangle	equals	180°.	The	figure	connects	this	fact



with	the	other	fact	that	alternate	angles	are	equal.	Connected	facts	however	are	more	interesting	and	are
better	retained	than	isolated	facts.	Thus,	our	figure	fixes	the	two	connected	geometric	propositions	in	our
mind	and,	finally,	the	figure	and	the	propositions	may	become	our	inalienable	mental	property.

Now	we	come	to	the	case	in	which	the	acquisition	of	general	ideas	is	not	regarded	as	necessary,	only
that	of	certain	facts	is	desired.	Even	in	such	a	case,	the	facts	must	be	presented	in	some	connection	and	in
some	 sort	 of	 system,	 since	 isolated	 items	 are	 laboriously	 acquired	 and	 easily	 forgotten.	 Any	 sort	 of
connection	that	unites	the	facts	simply,	naturally,	and	durably,	is	welcome	here.	The	system	need	not	be
founded	 on	 logic,	 it	must	 only	 be	 designed	 to	 aid	 the	memory	 effectively;	 it	must	 be	what	 is	 called	 a
mnemotechnic	system.	Yet	even	from	the	point	of	view	of	a	purely	mnemotechnic	system,	proofs	may	be
useful,	especially	simple	proofs.	For	instance,	the	student	must	learn	the	fact	about	the	sum	of	the	angles	in
the	triangle	and	that	other	fact	about	the	alternate	angles.	Can	any	device	to	retain	these	facts	be	simpler,
more	natural	or	more	effective	than	Fig.	23?

In	short,	even	when	no	special	importance	is	attached	to	general	logical	ideas	proofs	may	be	useful	as
a	mnemotechnic	device.

4.	 The	 cookbook	 system.	 We	 have	 discussed	 the	 advantages	 of	 proofs	 but	 we	 certainly	 did	 not
advocate	 that	 all	 proofs	 should	 be	 given	 “in	 extenso.”	 On	 the	 contrary,	 there	 are	 cases	 in	which	 it	 is
scarcely	possible	 to	do	so;	an	 important	case	 is	 the	 teaching	of	 the	differential	and	 integral	calculus	 to
students	of	engineering.

If	 the	 calculus	 is	 presented	 according	 to	modern	 standards	 of	 rigor,	 it	 demands	 proofs	 of	 a	 certain
degree	 of	 difficulty	 and	 subtlety	 (“epsilon-proofs”).	 But	 engineers	 study	 the	 calculus	 in	 view	 of	 its
application	and	have	neither	enough	time	nor	enough	training	or	interest	to	struggle	through	long	proofs	or
to	appreciate	subtleties.	Thus,	there	is	a	strong	temptation	to	cut	out	all	the	proofs.	Doing	so,	however,	we
reduce	the	calculus	to	the	level	of	the	cookbook.

The	 cookbook	 gives	 a	 detailed	 description	 of	 ingredients	 and	 procedures	 but	 no	 proofs	 for	 its
prescriptions	or	reasons	for	its	recipes;	the	proof	of	the	pudding	is	in	the	eating.	The	cookbook	may	serve
its	purpose	perfectly.	In	fact,	it	need	not	have	any	sort	of	logical	or	mnemotechnic	system	since	recipes
are	written	or	printed	and	not	retained	in	memory.

Yet	 the	 author	 of	 a	 textbook	of	 calculus,	 or	 a	 college	 instructor,	 can	 hardly	 serve	 his	 purpose	 if	 he
follows	the	system	of	the	cookbook	too	closely.	If	he	teaches	procedures	without	proofs,	the	unmotivated
procedures	 are	 not	 understood.	 If	 he	 gives	 rules	 without	 reasons,	 the	 unconnected	 rules	 are	 quickly
forgotten.	Mathematics	cannot	be	tested	in	exactly	the	same	manner	as	a	pudding;	if	all	sorts	of	reasoning
are	debarred,	a	course	of	calculus	may	easily	become	an	incoherent	inventory	of	indigestible	information.

5.	Incomplete	proofs.	The	best	way	of	handling	the	dilemma	between	too	heavy	proofs	and	the	level	of
the	cookbook	may	be	to	make	reasonable	use	of	incomplete	proofs.

For	a	strict	logician,	an	incomplete	proof	is	no	proof	at	all.	And,	certainly,	incomplete	proofs	ought	to
be	carefully	distinguished	from	complete	proofs;	to	confuse	one	with	the	other	is	bad,	to	sell	one	for	the
other	is	worse.	It	is	painful	when	the	author	of	a	textbook	presents	an	incomplete	proof	ambiguously,	with
visible	hesitation	between	shame	and	the	pretension	that	the	proof	is	complete.	But	incomplete	proofs	may
be	 useful	when	 they	 are	 used	 in	 their	 proper	 place	 and	 in	 good	 taste.	 Their	 purpose	 is	 not	 to	 replace
complete	proofs,	which	they	never	could,	but	to	lend	interest	and	coherence	to	the	presentation.

Example	 1.	 An	 algebraic	 equation	 of	 degree	 n	 has	 exactly	 n	 roots.	 This	 proposition,	 called	 the
Fundamental	Theorem	of	Algebra	by	Gauss,	must	often	be	presented	to	students	who	are	quite	unprepared
for	understanding	its	proof.	They	know	however	that	an	equation	of	 the	 first	degree	has	one	root,	and
one	 of	 the	 second	 degree	 two	 roots.	Moreover	 the	 difficult	 proposition	 has	 a	 part	 that	 can	 be	 easily
shown:	no	 equation	 of	 degree	 n	has	more	 than	 n	different	 roots.	 Do	 the	 facts	mentioned	 constitute	 a
complete	 proof	 for	 the	 Fundamental	 Theorem?	By	 no	means.	 They	 are	 sufficient	 however	 to	 lend	 it	 a



certain	interest	and	plausibility—and	to	fix	it	in	the	minds	of	the	students,	which	is	the	main	thing.
Example	2.	The	 sum	 of	 any	 two	 of	 the	 plane	 angles	 formed	 by	 the	 edges	 of	 a	 trihedral	 angle	 is

greater	than	the	third.	Obviously,	the	theorem	amounts	to	affirming	that	in	a	spherical	triangle	the	sum
of	any	two	sides	is	greater	than	the	third.	Having	observed	this,	we	naturally	think	of	the	analogy	of	the
spherical	triangle	with	the	rectilinear	triangle.	Do	these	remarks	constitute	a	proof?	By	no	means;	but	they
help	us	to	understand	and	to	remember	the	proposed	theorem.

Our	 first	 example	 has	 historical	 interest.	 For	 about	 250	 years,	 the	 mathematicians	 believed	 the
Fundamental	 Theorem	 without	 complete	 proof—in	 fact,	 without	 much	 more	 basis	 than	 what	 was
mentioned	 above.	 Our	 second	 example	 points	 to	 ANALOGY	 as	 an	 important	 source	 of	 conjectures.	 In
mathematics,	as	in	the	natural	and	physical	sciences,	discovery	often	starts	from	observation,	analogy,	and
induction.	These	means,	 tastefully	used	in	framing	a	plausible	heuristic	argument,	appeal	particularly	to
the	physicist	and	the	engineer.	(See	also	INDUCTION	AND	MATHEMATICAL	INDUCTION,	1,	2,	3.)

The	role	and	interest	of	incomplete	proofs	is	explained	to	a	certain	extent	by	our	study	of	the	process
of	 the	 solution.	 Some	 experience	 in	 solving	 problems	 shows	 that	 the	 first	 idea	 of	 a	 proof	 is	 very
frequently	 incomplete.	 The	most	 essential	 remark,	 the	main	 connection,	 the	 germ	 of	 the	 proof	may	 be
there,	but	details	must	be	provided	afterwards	 and	are	often	 troublesome.	Some	authors,	but	not	many,
have	the	gift	of	presenting	just	the	germ	of	the	proof,	the	main	idea	in	its	simplest	form,	and	indicating	the
nature	of	the	remaining	details.	Such	a	proof,	although	incomplete,	may	be	much	more	instructive	than	a
proof	presented	with	complete	details.

In	 short,	 incomplete	 proofs	may	 be	 used	 as	 a	 sort	 of	 mnemotechnic	 device	 (but,	 of	 course,	 not	 as
substitutes	 for	 complete	 proofs)	 when	 the	 aim	 is	 tolerable	 coherence	 of	 presentation	 and	 not	 strictly
logical	consistency.

It	 is	 very	 dangerous	 to	 advocate	 incomplete	 proofs.	 Possible	 abuse,	 however,	 may	 be	 kept	 within
bounds	 by	 a	 few	 rules.	 First,	 if	 a	 proof	 is	 incomplete,	 it	 must	 be	 indicated	 as	 such,	 somewhere	 and
somehow.	 Second,	 an	 author	 or	 a	 teacher	 is	 not	 entitled	 to	 present	 an	 incomplete	 proof	 for	 a	 theorem
unless	he	knows	very	well	a	complete	proof	for	it	himself.

And	it	may	be	confessed	that	to	present	an	incomplete	proof	in	good	taste	is	not	easy	at	all.

Wisdom	of	proverbs.	Solving	problems	is	a	fundamental	human	activity.	In	fact,	the	greater	part	of	our
conscious	thinking	is	concerned	with	problems.	When	we	do	not	indulge	in	mere	musing	or	daydreaming,
our	thoughts	are	directed	toward	some	end;	we	seek	means,	we	seek	to	solve	a	problem.

Some	people	are	more	and	others	 less	successful	 in	attaining	 their	ends	and	solving	 their	problems.
Such	 differences	 are	 noticed,	 discussed,	 and	 commented	 upon,	 and	 certain	 proverbs	 seem	 to	 have
preserved	 the	 quintessence	 of	 such	 comments.	 At	 any	 rate,	 there	 are	 a	 good	 many	 proverbs	 which
characterize	strikingly	the	typical	procedures	followed	in	solving	problems,	the	points	of	common	sense
involved,	 the	 usual	 tricks,	 and	 the	 usual	 errors.	 There	 are	 many	 shrewd	 and	 some	 subtle	 remarks	 in
proverbs	but,	obviously,	there	is	no	scientific	system	free	of	inconsistencies	and	obscurities	in	them.	On
the	contrary,	many	a	proverb	can	be	matched	with	another	proverb	giving	exactly	opposite	advice,	and
there	is	a	great	latitude	of	interpretation.	It	would	be	foolish	to	regard	proverbs	as	an	authoritative	source
of	universally	applicable	wisdom	but	it	would	be	a	pity	to	disregard	the	graphic	description	of	heuristic
procedures	provided	by	proverbs.

It	 could	 be	 an	 interesting	 task	 to	 collect	 and	 group	 proverbs	 about	 planning,	 seeking	 means,	 and
choosing	between	lines	of	action,	in	short,	proverbs	about	solving	problems.	Of	the	space	needed	for	such
a	task	only	a	small	fraction	is	available	here;	the	best	we	can	do	is	to	quote	a	few	proverbs	illustrating	the
main	phases	of	the	solution	emphasized	in	our	list,	and	discussed	in	sections	6	to	14	and	elsewhere.	The
proverbs	quoted	will	be	printed	in	italics.

1.	The	very	first	thing	we	must	do	for	our	problem	is	to	understand	it:	Who	understands	ill,	answers



ill.	We	must	 see	clearly	 the	end	we	have	 to	attain:	Think	on	 the	end	before	you	begin.	This	 is	 an	old
piece	 of	 advice;	 “respice	 finem”	 is	 the	 saying	 in	Latin.	Unfortunately,	 not	 everybody	 heeds	 such	 good
advice,	 and	 people	 often	 start	 speculating,	 talking,	 and	 even	 acting	 fussily	 without	 having	 properly
understood	the	aim	for	which	they	should	work.	A	fool	looks	to	the	beginning,	a	wise	man	regards	the
end.	If	the	end	is	not	clear	in	our	mind,	we	may	easily	stray	from	the	problem	and	drop	it.	A	wise	man
begins	in	the	end,	a	fool	ends	in	the	beginning.

Yet	it	is	not	enough	to	understand	the	problem,	we	must	also	desire	its	solution.	We	have	no	chance	to
solve	a	difficult	problem	without	a	strong	desire	to	solve	it,	but	with	such	desire	there	is	a	chance.	Where
there	is	a	will	there	is	a	way.

2.	 Devising	 a	 plan,	 conceiving	 the	 idea	 of	 an	 appropriate	 action,	 is	 the	 main	 achievement	 in	 the
solution	of	a	problem.

A	good	idea	is	a	piece	of	good	fortune,	an	inspiration,	a	gift	of	the	gods,	and	we	have	to	deserve	it:
Diligence	is	the	mother	of	good	luck.	Perseverance	kills	the	game.	An	oak	is	not	felled	at	one	stroke.	If
at	first	you	don’t	succeed,	try,	try	again.	It	is	not	enough	however	to	try	repeatedly,	we	must	try	different
means,	vary	our	 trials.	Try	all	 the	keys	 in	 the	bunch.	Arrows	are	made	of	all	 sorts	of	wood.	We	must
adapt	our	trials	to	the	circumstances.	As	the	wind	blows	you	must	set	your	sail.	Cut	your	coat	according
to	the	cloth.	We	must	do	as	we	may	if	we	can’t	do	as	we	would.	If	we	have	failed,	we	must	try	something
else.	A	wise	man	changes	his	mind,	a	fool	never	does.	We	should	even	be	prepared	from	the	outset	for	a
possible	failure	of	our	scheme	and	have	another	one	in	reserve.	Have	two	strings	to	your	bow.	We	may,
of	course,	overdo	this	sort	of	changing	from	one	scheme	to	another	and	lose	time.	Then	we	may	hear	the
ironical	comment:	Do	and	undo,	the	day	is	long	enough.	We	are	likely	to	blunder	less	if	we	do	not	lose
sight	of	our	aim.	The	end	of	fishing	is	not	angling	but	catching.

We	work	hard	to	extract	something	helpful	from	our	memory,	yet,	quite	often,	when	an	idea	that	could
be	helpful	presents	itself,	we	do	not	appreciate	it,	for	it	is	so	inconspicuous.	The	expert	has,	perhaps,	no
more	ideas	than	the	inexperienced,	but	appreciates	more	what	he	has	and	uses	it	better.	A	wise	man	will
make	more	opportunities	than	he	finds.	A	wise	man	will	make	tools	of	what	comes	to	hand.	A	wise	man
turns	chance	into	good	fortune.	Or,	possibly,	the	advantage	of	the	expert	is	that	he	is	continually	on	the
lookout	for	opportunities.	Have	an	eye	to	the	main	chance.

3.	We	should	start	carrying	out	our	plan	at	the	right	moment,	when	it	is	ripe,	but	not	before.	We	should
not	start	rashly.	Look	before	you	leap.	Try	before	you	trust.	A	wise	delay	makes	the	road	safe.	On	 the
other	hand,	we	should	not	hesitate	too	long.	If	you	will	sail	without	danger	you	must	never	put	to	sea.
Do	the	likeliest	and	hope	the	best.	Use	the	means	and	God	will	give	the	blessing.

We	must	use	our	judgment	to	determine	the	right	moment.	And	here	is	a	timely	warning	that	points	out
the	most	common	fallacy,	the	most	usual	failure	of	our	judgment:	We	soon	believe	what	we	desire.

Our	plan	gives	usually	but	a	general	outline.	We	have	to	convince	ourselves	that	the	details	fit	into	the
outline,	and	so	we	have	to	examine	carefully	each	detail,	one	after	the	other.	Step	after	step	the	ladder	is
ascended.	Little	by	little	as	the	cat	ate	the	flickle.	Do	it	by	degrees.

In	carrying	out	our	plan	we	must	be	careful	to	arrange	its	steps	in	the	proper	order,	which	is	frequently
just	the	reverse	of	the	order	of	invention.	What	a	fool	does	at	last,	a	wise	man	does	at	first.

4.	Looking	back	at	the	completed	solution	is	an	important	and	instructive	phase	of	the	work.	He	thinks
not	well	that	thinks	not	again.	Second	thoughts	are	best.

Reexamining	 the	 solution,	we	may	 discover	 an	 additional	 confirmation	 of	 the	 result.	Yet	 it	must	 be
pointed	out	to	the	beginner	that	such	an	additional	confirmation	is	valuable,	that	two	proofs	are	better	than
one.	It	is	safe	riding	at	two	anchors.

5.	We	have	by	no	means	exhausted	the	comments	of	proverbs	on	the	solution	of	problems.	Yet	many
other	proverbs	which	could	be	quoted	would	scarcely	furnish	new	themes,	only	variations	on	the	themes



already	mentioned.	Certain	more	systematic	and	more	sophisticated	aspects	of	the	process	of	solution	are
hardly	within	the	scope	of	the	Wisdom	of	Proverbs.

In	describing	the	more	systematic	aspects	of	the	solution,	the	author	tried	now	and	then	to	imitate	the
peculiar	 turn	 of	 proverbs,	which	 is	 not	 easy.	Here	 follow	 a	 few	 “synthetic”	 proverbs	which	 describe
somewhat	more	sophisticated	attitudes.

The	end	suggests	the	means.
Your	five	best	friends	are	What,	Why,	Where,	When,	and	How.	You	ask	What,	you	ask	Why,	you	ask

Where,	When,	and	How—and	ask	nobody	else	when	you	need	advice.
Do	not	believe	anything	but	doubt	only	what	is	worth	doubting.
Look	 around	 when	 you	 have	 got	 your	 first	 mushroom	 or	 made	 your	 first	 discovery;	 they	 grow	 in

clusters.

Working	backwards.	 If	we	wish	 to	 understand	 human	 behavior	we	 should	 compare	 it	with	 animal
behavior.	 Animals	 also	 “have	 problems”	 and	 “solve	 problems.”	 Experimental	 psychology	 has	 made
essential	progress	 in	 the	 last	decades	 in	exploring	 the	“problem-solving”	 activities	of	various	animals.
We	cannot	discuss	here	these	investigations	but	we	shall	describe	sketchily	just	one	simple	and	instructive
experiment	and	our	description	will	serve	as	a	sort	of	comment	upon	the	method	of	analysis,	or	method	of
“working	backwards.”	This	method,	by	the	way,	is	discussed	also	elsewhere	in	the	present	book,	under
the	name	of	PAPPUS	to	whom	we	owe	an	important	description	of	the	method.

1.	Let	us	try	to	find	an	answer	to	the	following	tricky	question:	How	can	you	bring	up	from	the	river
exactly	six	quarts	of	water	when	you	have	only	two	containers,	a	four	quart	pail	and	a	nine	quart	pail,
to	measure	with?

Let	us	visualize	clearly	the	given	tools	we	have	to	work	with,	the	two	containers.	(What	is	given?)	We
imagine	two	cylindrical	containers	having	equal	bases	whose	altitudes	are	as	9	to	4,	see	Fig.	24.	If	along
the	lateral	surface	of	each	container	there	were	a	scale	of	equally	spaced	horizontal	lines	from	which	we
could	tell	the	height	of	the	waterline,	our	problem	would	be	easy.	Yet	there	is	no	such	scale	and	so	we	are
still	far	from	the	solution.

FIG.	24

We	do	not	know	yet	how	to	measure	exactly	6	quarts;	but	could	we	measure	something	else?	(If	you
cannot	solve	the	proposed	problem	try	to	solve	first	some	related	problem.	Could	you	derive	something
useful	from	the	data?)	Let	us	do	something,	let	us	play	around	a	little.	We	could	fill	the	larger	container
to	full	capacity	and	empty	so	much	as	we	can	into	the	smaller	container;	then	we	could	get	5	quarts.	Could
we	also	get	6	quarts?	Here	are	again	the	two	empty	containers.	We	could	also	.	.	.

We	are	working	now	as	most	people	do	when	confronted	with	this	puzzle.	We	start	with	the	two	empty
containers,	we	 try	 this	and	 that,	we	empty	and	fill,	and	when	we	do	not	succeed,	we	start	again,	 trying
something	else.	We	are	working	 forwards,	 from	the	given	 initial	situation	 to	 the	desired	final	situation,



from	the	data	to	the	unknown.	We	may	succeed,	after	many	trials,	accidentally.
2.	But	exceptionally	able	people,	or	people	who	had	the	chance	to	learn	in	their	mathematics	classes

something	more	than	mere	routine	operations,	do	not	spend	too	much	time	in	such	trials	but	turn	around,
and	start	working	backwards.

What	are	we	required	to	do?	(What	is	the	unknown?)	Let	us	visualize	the	final	situation	we	aim	at	as
clearly	as	possible.	Let	us	imagine	that	we	have	here,	before	us,	the	larger	container	with	exactly	6	quarts
in	it	and	the	smaller	container	empty	as	in	Fig.	25.	(Let	us	start	from	what	is	required	and	assume	what	is
sought	as	already	found,	says	Pappus.)

FIG.	25

From	what	 foregoing	situation	could	we	obtain	 the	desired	final	situation	shown	in	Fig.	25?	 (Let	 us
inquire	from	what	antecedent	the	desired	result	could	be	derived,	says	Pappus.)	We	could,	of	course,	fill
the	 larger	container	 to	full	capacity,	 that	 is,	 to	9	quarts.	But	 then	we	should	be	able	 to	pour	out	exactly
three	quarts.	To	do	that	.	.	.	we	must	have	just	one	quart	in	the	smaller	container!	That’s	the	idea.	See	Fig.
26.

(The	step	that	we	have	just	completed	is	not	easy	at	all.	Few	persons	are	able	to	take	it	without	much
foregoing	 hesitation.	 In	 fact,	 recognizing	 the	 significance	 of	 this	 step,	 we	 foresee	 an	 outline	 of	 the
following	solution.)

FIG.	26

But	how	can	we	reach	the	situation	that	we	have	just	found	and	illustrated	by	Fig.	26?	(Let	us	inquire
again	what	could	be	the	antecedent	of	that	antecedent.)	Since	the	amount	of	water	in	the	river	is,	for	our
purpose,	unlimited,	the	situation	of	Fig.	26	amounts	to	the	same	as	the	next	one	in	Fig.	27



FIG.	27

or	the	following	in	Fig.	28.

FIG.	28

It	is	easy	to	recognize	that	if	any	one	of	the	situations	in	Figs.	26,	27,	28	is	obtained,	any	other	can	be
obtained	just	as	well,	but	it	is	not	so	easy	to	hit	upon	Fig.	28,	unless	we	have	seen	it	before,	encountered
it	 accidentally	 in	 one	 of	 our	 initial	 trials.	 Playing	 around	with	 the	 two	 containers,	we	may	 have	 done
something	 similar	 and	 remember	 now,	 in	 the	 right	 moment,	 that	 the	 situation	 of	 Fig.	 28	 can	 arise	 as
suggested	by	Fig.	29:	We	 fill	 the	 large	 container	 to	 full	 capacity,	 and	pour	 from	 it	 four	 quarts	 into	 the
smaller	 container	 and	 then	 into	 the	 river,	 twice	 in	 succession.	 We	 came	 eventually	 upon	 something
already	known	(these	are	Pappus’s	words)	and	following	the	method	of	analysis,	working	backwards,	we
have	discovered	the	appropriate	sequence	of	operations.

FIG.	29

It	is	true,	we	have	discovered	the	appropriate	sequence	in	retrogressive	order	but	all	that	is	left	to	do
is	to	reverse	the	process	and	start	from	the	point	which	we	reached	last	of	all	in	the	analysis	(as	Pappus
says).	First,	we	perform	the	operations	suggested	by	Fig.	29	and	obtain	Fig.	28;	then	we	pass	to	Fig.	27,



then	 to	Fig.	26,	 and	 finally	 to	Fig.	25.	Retracing	 our	 steps,	we	 finally	 succeed	 in	 deriving	what	was
required.

3.	Greek	tradition	attributed	to	Plato	the	discovery	of	the	method	of	analysis.	The	tradition	may	not	be
quite	 reliable	 but,	 at	 any	 rate,	 if	 the	method	was	 not	 invented	 by	 Plato,	 some	Greek	 scholar	 found	 it
necessary	to	attribute	its	invention	to	a	philosophical	genius.

There	 is	 certainly	 something	 in	 the	method	 that	 is	 not	 superficial.	 There	 is	 a	 certain	 psychological
difficulty	 in	 turning	 around,	 in	 going	 away	 from	 the	 goal,	 in	working	 backwards,	 in	 not	 following	 the
direct	path	to	the	desired	end.	When	we	discover	the	sequence	of	appropriate	operations,	our	mind	has	to
proceed	 in	 an	 order	 which	 is	 exactly	 the	 reverse	 of	 the	 actual	 performance.	 There	 is	 some	 sort	 of
psychological	repugnance	to	this	reverse	order	which	may	prevent	a	quite	able	student	from	understanding
the	method	if	it	is	not	presented	carefully.

Yet	it	does	not	take	a	genius	to	solve	a	concrete	problem	working	backwards;	anybody	can	do	it	with	a
little	common	sense.	We	concentrate	upon	 the	desired	end,	we	visualize	 the	final	position	 in	which	we
would	like	to	be.	From	what	foregoing	position	could	we	get	there?	It	is	natural	to	ask	this	question,	and
in	so	asking	we	work	backwards.	Quite	primitive	problems	may	lead	naturally	to	working	backwards;	see
PAPPUS,	4.

Working	backwards	 is	a	common-sense	procedure	within	 the	reach	of	everybody	and	we	can	hardly
doubt	 that	 it	was	 practiced	 by	mathematicians	 and	 nonmathematicians	 before	 Plato.	What	 some	Greek
scholar	may	have	regarded	as	an	achievement	worthy	of	 the	genius	of	Plato	is	 to	state	 the	procedure	in
general	 terms	 and	 to	 stamp	 it	 as	 an	 operation	 typically	 useful	 in	 solving	 mathematical	 and
nonmathematical	problems.

4.	And	now,	we	turn	to	the	psychological	experiment—if	the	transition	from	Plato	to	dogs,	hens,	and
chimpanzees	is	not	too	abrupt.	A	fence	forms	three	sides	of	a	rectangle	but	leaves	open	the	fourth	side	as
shown	in	Fig.	30.	We	place	a	dog	on	one	side	of	the	fence,	at	the	point	D,	and	some	food	on	the	other	side,
at	the	point	F.	The	problem	is	fairly	easy	for	the	dog.	He	may	first	strike	a	posture	as	if	to	spring	directly
at	 the	 food	but	 then	he	quickly	 turns	about,	dashes	off	around	 the	end	of	 the	 fence	and,	 running	without
hesitation,	reaches	the	food	in	a	smooth	curve.	Sometimes,	however,	especially	when	the	points	D	and	F
are	close	to	each	other,	the	solution	is	not	so	smooth;	the	dog	may	lose	some	time	in	barking,	scratching,
or	jumping	against	the	fence	before	he	“conceives	the	bright	idea”	(as	we	would	say)	of	going	around.

FIG.	30

It	is	interesting	to	compare	the	behavior	of	various	animals	put	into	the	place	of	the	dog.	The	problem
is	very	easy	for	a	chimpanzee	or	a	four-year-old	child	(for	whom	a	toy	may	be	a	more	attractive	lure	than



food).	 The	 problem,	 however,	 turns	 out	 to	 be	 surprisingly	 difficult	 for	 a	 hen	who	 runs	 back	 and	 forth
excitedly	on	her	side	of	the	fence	and	may	spend	considerable	time	before	getting	at	the	food	if	she	gets
there	at	all.	But	she	may	succeed,	after	much	running,	accidentally.

5.	 We	 should	 not	 build	 a	 big	 theory	 upon	 just	 one	 simple	 experiment	 which	 was	 only	 sketchily
reported.	Yet	there	can	be	no	disadvantage	in	noticing	obvious	analogies	provided	that	we	are	prepared	to
recheck	and	revalue	them.

Going	around	an	obstacle	is	what	we	do	in	solving	any	kind	of	problem;	the	experiment	has	a	sort	of
symbolic	value.	The	hen	acted	like	people	who	solve	 their	problem	muddling	through,	 trying	again	and
again,	and	succeeding	eventually	by	some	lucky	accident	without	much	insight	into	the	reasons	for	their
success.	The	dog	who	scratched	and	jumped	and	barked	before	turning	around	solved	his	problem	about
as	 well	 as	 we	 did	 ours	 about	 the	 two	 containers.	 Imagining	 a	 scale	 that	 shows	 the	 waterline	 in	 our
containers	was	a	sort	of	almost	useless	scratching,	showing	only	that	what	we	seek	lies	deeper	under	the
surface.	We	also	tried	to	work	forwards	first,	and	came	to	the	idea	of	turning	round	afterwards.	The	dog
who,	 after	 brief	 inspection	 of	 the	 situation,	 turned	 round	 and	 dashed	 off	 gives,	 rightly	 or	wrongly,	 the
impression	of	superior	insight.

No,	we	should	not	even	blame	the	hen	for	her	clumsiness.	There	is	a	certain	difficulty	in	turning	round,
in	going	away	from	the	goal,	 in	proceeding	without	 looking	continually	at	 the	aim,	 in	not	 following	 the
direct	path	to	the	desired	end.	There	is	an	obvious	analogy	between	her	difficulties	and	our	difficulties.

1	The	text	 is	slightly	rearranged.	For	a	more	exact	 translation	see	William	Whewell,	The	Philosophy	of	 the	Inductive	Sciences	 (1847),
vol.	II,	p.	131.

2	The	plane	is	bisected	by	the	line	through	B	and	C.	We	choose	one	of	the	halfplanes	to	construct	A	in	it,	and	so	we	may	consider	just	one
parallel	to	BC;	otherwise,	we	should	consider	two	such	parallels.

3	In	this	respect,	ideas	have	changed	since	the	time	of	Euclid	and	his	Greek	followers	who	defined	the	point,	the	straight	line,	and	the	plane.
Their	“definitions”	however	are	scarcely	formal	definitions,	rather	intuitive	illustrations	of	a	sort.	Illustrations,	of	course,	are	allowed,	and	even
very	desirable	in	teaching.

4	The	Nation,	June	9,	1945,	Crossword	Puzzle,	No.	119.
5	If	the	angles	of	a	triangle	are	α,	β,	γ	and	90°	>	α	>	β	>	γ,	then	at	least	one	of	the	differences	90°	−	α,	α	−	β,	β	−	γ	is	<	15°,	unless	α	=	75°,

β	=	60°,	γ	=	45°.	In	fact,

6	See	also	a	paper	by	the	author	in	American	Mathematical	Monthly,	vol.	48,	pp.	450-465.
7	T.	L.	Heath,	The	Thirteen	Books	of	Euclid’s	Elements,	Cambridge,	1908,	vol.	1,	p.	138.
8	Several	points	discussed	in	this	article	are	more	fully	considered	in	the	author’s	paper,	Acta	Psychologica,	vol.	4	(1938),	pp.	113-170.
9	The	American	Mathematical	Monthly,	vol.	50	(1943),	p.	124	and	vol.	51	(1944),	pp.	234-236.
10	 For	 an	 all-round	 discussion	 of	 “unconscious	 thinking”	 see	 Jacques	Hadamard,	The	 Psychology	 of	 Invention	 in	 the	Mathematical

Field.
11	Part	of	Proposition	32	of	Book	I	of	Euclid’s	Elements.	The	following	proof	is	not	Euclid’s,	but	was	known	to	the	Greeks.



PART	IV.	PROBLEMS,	HINTS,	SOLUTIONS

This	last	part	offers	the	reader	additional	opportunity	for	practice.
The	 problems	 require	 no	more	 preliminary	 knowledge	 than	 the	 reader	 could	 have	 acquired	 from	 a

good	 high-school	 curriculum.	Yet	 they	 are	 not	 too	 easy	 and	 not	mere	 routine	 problems;	 some	 of	 them
demand	originality	and	ingenuity.12

The	hints	offer	 indications	 leading	 to	 the	 result,	mostly	by	quoting	an	appropriate	 sentence	 from	 the
list;	to	a	very	attentive	reader	ready	to	pick	up	suggestions	they	may	reveal	the	key	idea	of	the	solution.

The	 solutions	 bring	 not	 only	 the	 answer	 but	 also	 the	 procedure	 leading	 to	 the	 answer,	 although,	 of
course,	the	reader	has	to	supply	some	of	the	details.	Some	solutions	try	to	open	up	some	further	outlook	by
a	few	words	placed	at	the	end.

The	reader	who	has	earnestly	tried	to	solve	the	problem	has	the	best	chance	to	profit	by	the	hint	and	the
solution.	If	he	obtains	the	result	by	his	own	means,	he	may	learn	something	by	comparing	his	method	with
the	method	given	in	print.	If,	after	a	serious	effort,	he	is	inclined	to	give	up,	the	hint	may	supply	him	with
the	missing	idea.	If	even	the	hint	does	not	help,	he	may	look	at	the	solution,	try	to	isolate	the	key	idea,	put
the	book	aside,	and	then	try	to	work	out	the	solution.

PROBLEMS
1.	A	bear,	starting	from	the	point	P,	walked	one	mile	due	south.	Then	he	changed	direction	and	walked

one	mile	due	east.	Then	he	turned	again	to	the	left	and	walked	one	mile	due	north,	and	arrived	exactly	at
the	point	P	he	started	from.	What	was	the	color	of	the	bear?

2.	Bob	wants	a	piece	of	 land,	exactly	 level,	which	has	four	boundary	lines.	Two	boundary	lines	run
exactly	north-south,	the	two	others	exactly	east-west,	and	each	boundary	line	measures	exactly	100	feet.
Can	Bob	buy	such	a	piece	of	land	in	the	U.S.?

3.	Bob	has	10	pockets	and	44	silver	dollars.	He	wants	to	put	his	dollars	into	his	pockets	so	distributed
that	each	pocket	contains	a	different	number	of	dollars.	Can	he	do	so?

4.	 To	 number	 the	 pages	 of	 a	 bulky	 volume,	 the	 printer	 used	 2989	 digits.	 How	many	 pages	 has	 the
volume?

5.	Among	Grandfather’s	papers	a	bill	was	found:

72	turkeys	 _67.9_

The	first	and	last	digit	of	the	number	that	obviously	represented	the	total	price	of	those	fowls	are	replaced
here	by	blanks,	for	they	have	faded	and	are	now	illegible.

What	are	the	two	faded	digits	and	what	was	the	price	of	one	turkey?
6.	Given	a	regular	hexagon	and	a	point	in	its	plane.	Draw	a	straight	line	through	the	given	point	that

divides	the	given	hexagon	into	two	parts	of	equal	area.



7.	Given	a	square.	Find	the	locus	of	the	points	from	which	the	square	is	seen	under	an	angle	(a)	of	90°
(b)	of	45°.	(Let	P	be	a	point	outside	the	square,	but	in	the	same	plane.	The	smallest	angle	with	vertex	P
containing	the	square	is	the	“angle	under	which	the	square	is	seen”	from	P.)	Sketch	clearly	both	loci	and
give	a	full	description.

8.	Call	“axis”	of	a	solid	a	straight	line	joining	two	points	of	the	surface	of	the	solid	and	such	that	the
solid,	rotated	about	this	line	through	an	angle	which	is	greater	than	0°	and	less	than	360°	coincides	with
itself.

Find	the	axes	of	a	cube.	Describe	clearly	the	location	of	the	axes,	find	the	angle	of	rotation	associated
with	each.	Assuming	that	the	edge	of	the	cube	is	of	unit	length,	compute	the	arithmetic	mean	of	the	lengths
of	the	axes.

9.	In	a	tetrahedron	(which	is	not	necessarily	regular)	two	opposite	edges	have	the	same	length	a	and
they	are	perpendicular	 to	each	other.	Moreover	 they	are	each	perpendicular	 to	a	 line	of	 length	b	which
joins	their	midpoints.	Express	the	volume	of	the	tetrahedron	in	terms	of	a	and	b,	and	prove	your	answer.

10.	The	vertex	of	a	pyramid	opposite	the	base	is	called	the	apex.	(a)	Let	us	call	a	pyramid	“isosceles”
if	 its	apex	is	at	 the	same	distance	from	all	vertices	of	 the	base.	Adopting	 this	definition,	prove	 that	 the
base	 of	 an	 isosceles	 pyramid	 is	 inscribed	 in	 a	 circle	 the	 center	 of	which	 is	 the	 foot	 of	 the	 pyramid’s
altitude.

(b)	Now	let	us	call	a	pyramid	“isosceles”	if	its	apex	is	at	the	same	(perpendicular)	distance	from	all
sides	 of	 the	 base.	 Adopting	 this	 definition	 (different	 from	 the	 foregoing)	 prove	 that	 the	 base	 of	 an
isosceles	pyramid	is	circumscribed	about	a	circle	the	center	of	which	is	the	foot	of	the	pyramid’s	altitude.

11.	Find	x,	y,	u,	and	v,	satisfying	the	system	of	four	equations
		x	+	7y	+	3v	+	5u	=			16
8x	+	4y	+	6v	+	2u	=	−16
2x	+	6y	+	4v	+	8u	=			16
5x	+	3y	+	7v	+			u	=	−16

(This	may	look	long	and	boring:	look	for	a	short	cut.)
12.	Bob,	Peter,	and	Paul	travel	together.	Peter	and	Paul	are	good	hikers;	each	walk	p	miles	per	hour.

Bob	has	a	bad	foot	and	drives	a	small	car	in	which	two	people	can	ride,	but	not	three;	the	car	covers	c
miles	per	hour.	The	three	friends	adopted	the	following	scheme:	They	start	together,	Paul	rides	in	the	car
with	Bob,	Peter	walks.	After	a	while,	Bob	drops	Paul,	who	walks	on;	Bob	returns	to	pick	up	Peter,	and
then	Bob	and	Peter	ride	in	the	car	till	they	overtake	Paul.	At	this	point	they	change:	Paul	rides	and	Peter
walks	just	as	they	started	and	the	whole	procedure	is	repeated	as	often	as	necessary.

(a)	How	much	progress	(how	many	miles)	does	the	company	make	per	hour?
(b)	Through	which	fraction	of	the	travel	time	does	the	car	carry	just	one	man?
(c)	Check	the	extreme	cases	p	=	0	and	p	=	c.
13.	 Three	 numbers	 are	 in	 arithmetic	 progression,	 three	 other	 numbers	 in	 geometric	 progression.

Adding	the	corresponding	terms	of	these	two	progressions	successively,	we	obtain

85,			76,			and			84

respectively,	and,	adding	all	three	terms	of	the	arithmetic	progression,	we	obtain	126.	Find	the	terms	of
both	progressions.

14.	Determine	m	so	that	the	equation	in	x

x4	−	(3m	+	2)x2	+	m2	=	0

has	four	real	roots	in	arithmetic	progression.



15.	 The	 length	 of	 the	 perimeter	 of	 a	 right	 triangle	 is	 60	 inches	 and	 the	 length	 of	 the	 altitude
perpendicular	to	the	hypotenuse	is	12	inches.	Find	the	sides.

16.	From	the	peak	of	a	mountain	you	see	two	points,	A	and	B,	in	the	plain.	The	lines	of	vision,	directed
to	these	points,	include	the	angle	γ.	The	inclination	of	the	first	line	of	vision	to	a	horizontal	plane	is	α,	that
of	 the	 second	 line	 β.	 It	 is	 known	 that	 the	 points	A	 and	B	 are	 on	 the	 same	 level	 and	 that	 the	 distance
between	them	is	c.

Express	the	elevation	x	of	the	peak	above	the	common	level	of	A	and	B	in	terms	of	the	angles	α,	β,	γ,
and	the	distance	c.

17.	Observe	that	the	value	of

is	 1/2,	 5/6,	 23/24	 for	 n	 =	 1,2,3,	 respectively,	 guess	 the	 general	 law	 (by	 observing	 more	 values	 if
necessary)	and	prove	your	guess.

18.	Consider	the	table

Guess	 the	 general	 law	 suggested	 by	 these	 examples,	 express	 it	 in	 suitable	mathematical	 notation,	 and
prove	it.

19.	The	side	of	a	regular	hexagon	is	of	length	n	(n	is	an	integer).	By	equidistant	parallels	to	its	sides
the	hexagon	is	divided	into	T	equilateral	triangles	each	of	which	has	sides	of	length	1.	Let	V	denote	the
number	of	vertices	appearing	in	this	division,	and	L	the	number	of	boundary	lines	of	length	1.	(A	boundary
line	belongs	to	one	or	two	triangles,	a	vertex	to	two	or	more	triangles.)	When	n	=	1,	which	is	the	simplest
case,	T	=	6,	V	=	7,	L	=	12.	Consider	the	general	case	and	express	T,	V,	and	L	in	terms	of	n.	(Guessing	is
good,	proving	is	better.)

20.	In	how	many	ways	can	you	change	one	dollar?	(The	“way	of	changing”	is	determined	if	it	is	known
how	many	coins	of	each	kind—cents,	nickels,	dimes,	quarters,	half	dollars—are	used.)

HINTS
1.	What	 is	 the	 unknown?	 The	 color	 of	 a	 bear—but	 how	 could	 we	 find	 the	 color	 of	 a	 bear	 from

mathematical	data?	What	is	given?	A	geometrical	situation—but	it	seems	self-contradictory:	how	could
the	bear,	after	walking	three	miles	in	the	manner	described,	return	to	his	starting	point?

2.	Do	you	know	a	related	problem?
3.	If	Bob	had	very	many	dollars,	he	would	have	obviously	no	difficulty	in	filling	each	of	his	pockets

differently.	Could	you	restate	the	problem?	What	is	the	minimum	number	of	dollars	that	can	be	put	in	10
pockets	so	that	no	two	different	pockets	contain	the	same	amount?

4.	Here	is	a	problem	related	to	yours:	If	the	book	has	exactly	9	numbered	pages,	how	many	digits	uses
the	printer?	(9,	of	course.)	Here	is	another	problem	related	to	yours:	If	the	book	has	exactly	99	numbered
pages,	how	many	digits	does	the	printer	use?



5.	Could	you	restate	 the	problem?	What	can	 the	 two	faded	digits	be	 if	 the	 total	price,	expressed	 in
cents,	is	divisible	by	72?

6.	Could	you	imagine	a	more	accessible	related	problem?	A	more	general	problem?	An	analogous
problem?	(GENERALIZATION,	2.)

7.	Do	you	know	a	related	problem?	The	locus	of	the	points	from	which	a	given	segment	of	a	straight
line	is	seen	under	a	given	angle	consists	of	two	circular	arcs,	ending	in	the	extreme	points	of	the	segment,
and	symmetric	to	each	other	with	respect	to	the	segment.

8.	 I	assume	 that	 the	 reader	 is	 familiar	with	 the	shape	of	 the	cube	and	has	 found	certain	axes	 just	by
inspection—but	are	they	all	the	axes?	Can	you	prove	that	your	list	of	axes	is	exhaustive?	Has	your	list	a
clear	principle	of	classification?

9.	Look	at	the	unknown!	The	unknown	is	the	volume	of	a	tetrahedron—yes,	I	know,	the	volume	of	any
pyramid	can	be	computed	when	the	base	and	the	height	are	given	(product	of	both,	divided	by	3)	but	in	the
present	 case	 neither	 the	 base	 nor	 the	 height	 is	 given.	Could	 you	 imagine	 a	 more	 accessible	 related
problem?	(Don’t	you	see	a	more	accessible	tetrahedron	which	is	an	aliquot	part	of	the	given	one?)

10.	Do	you	know	a	related	theorem?	Do	you	know	a	related	.	.	.	simpler	.	.	.	analogous	theorem?	Yes:
the	foot	of	the	altitude	is	the	mid-point	of	the	base	in	an	isosceles	triangle.	Here	is	a	theorem	related	to
yours	and	proved	before.	Could	you	use	.	.	.	its	method?	The	theorem	on	the	isosceles	triangle	is	proved
from	congruent	right	triangles	of	which	the	altitude	is	a	common	side.

11.	It	is	assumed	that	the	reader	is	somewhat	familiar	with	systems	of	linear	equations.	To	solve	such	a
system,	we	 have	 to	 combine	 its	 equations	 in	 some	way—look	 out	 for	 relations	 between	 the	 equations
which	could	indicate	a	particularly	advantageous	combination.

12.	Separate	the	various	parts	of	the	condition.	Can	you	write	them	down?	Between	the	start	and	the
point	where	the	three	friends	meet	again	there	are	three	different	phases:

(1)	Bob	rides	with	Paul
(2)	Bob	rides	alone
(3)	Bob	rides	with	Peter.

Call	 t1,	 t2,	 and	 t3	 the	 durations	 of	 these	 phases,	 respectively.	 How	 could	 you	 split	 the	 condition	 into
appropriate	parts?

13.	Separate	the	various	parts	of	the	condition.	Can	you	write	them	down?	Let

a	−	d,					a,					a	+	d

be	the	terms	of	the	arithmetic	progression,	and

bg−1,					b,					bg

be	the	terms	of	the	geometric	progression.
14.	What	is	the	condition?	The	four	roots	must	form	an	arithmetic	progression.	Yet	the	equation	has	a

particular	feature:	it	contains	only	even	powers	of	the	unknown	x.	Therefore,	if	a	is	a	root,	−a	 is	also	a
root.

15.	Separate	the	various	parts	of	the	condition.	Can	you	write	them	down?	We	may	distinguish	three
parts	in	the	condition,	concerning

(1)	perimeter
(2)	right	triangle
(3)	height	to	hypotenuse.

16.	Separate	the	various	parts	of	the	condition.	Can	you	write	them	down?	Let	a	and	b	stand	for	the



lengths	 of	 the	 (unknown)	 lines	 of	 vision,	 α	 and	 β	 for	 their	 inclinations	 to	 the	 horizontal	 plane,
respectively.	We	may	distinguish	three	parts	in	the	condition,	concerning

(1)	the	inclination	of	a
(2)	the	inclination	of	b
(3)	the	triangle	with	sides	a,	b,	and	c.

17.	Do	 you	 recognize	 the	 denominators	 2,	 6,	 24?	Do	 you	 know	 a	 related	 problem?	An	 analogous
problem?	(INDUCTION	AND	MATHEMATICAL	INDUCTION.)

18.	Discovery	by	 induction	needs	observation.	Observe	 the	 right-hand	 sides,	 the	 initial	 terms	of	 the
left-hand	sides,	and	the	final	terms.	What	is	the	general	law?

19.	Draw	a	figure.	Its	observation	may	help	you	to	discover	the	law	inductively,	or	it	may	lead	you	to
relations	between	T,	V,	L,	and	n.

20.	What	 is	 the	unknown?	What	 are	we	 supposed	 to	 seek?	Even	 the	 aim	of	 the	 problem	may	need
some	clarification.	Could	you	imagine	a	more	accessible	related	problem?	A	more	general	problem?	An
analogous	problem?	Here	is	a	very	simple	analogous	problem:	In	how	many	ways	can	you	pay	one	cent?
(There	is	just	one	way.)	Here	is	a	more	general	problem:	In	how	many	ways	can	you	pay	the	amount	of	n
cents	using	these	five	kinds	of	coins:	cents,	nickels,	dimes,	quarters,	and	half	dollars.	We	are	especially
concerned	with	the	particular	case	n	=	100.

In	 the	 simplest	 particular	 cases,	 for	 small	 n,	 we	 can	 figure	 out	 the	 answer	 without	 any	 high-brow
method,	just	by	trying,	by	inspection.	Here	is	a	short	table	(which	the	reader	should	check).

The	 first	 line	 lists	 the	 amounts	 to	 be	 paid,	 generally	 called	n.	 The	 second	 line	 lists	 the	 corresponding
numbers	of	“ways	of	paying,”	generally	called	En.	(Why	I	have	chosen	this	notation	is	a	secret	of	mine
which	I	am	not	willing	to	give	away	at	this	stage.)

We	are	especially	concerned	with	E100,	but	there	is	little	hope	that	we	can	compute	E100	without	some
clear	method.	In	fact	the	present	problem	requires	a	little	more	from	the	reader	than	the	foregoing	ones;	he
should	create	a	little	theory.

Our	question	is	general	(to	compute	En	for	general	n),	but	it	is	“isolated.”	Could	you	imagine	a	more
accessible	related	problem?	An	analogous	problem?	Here	is	a	very	simple	analogous	problem:	Find	An,
the	number	of	ways	to	pay	the	amount	of	n	cents,	using	only	cents.	(An	=	1.)

SOLUTIONS
1.	You	 think	 that	 the	bear	was	white	and	 the	point	P	 is	 the	North	Pole?	Can	you	prove	 that	 this	 is

correct?	As	 it	was	more	or	 less	understood,	we	 idealize	 the	question.	We	 regard	 the	globe	 as	 exactly
spherical	and	the	bear	as	a	moving	material	point.	This	point,	moving	due	south	or	due	north,	describes	an
arc	of	a	meridian	and	it	describes	an	arc	of	a	parallel	circle	(parallel	to	the	equator)	when	it	moves	due
east.	We	have	to	distinguish	two	cases.

(1)	If	the	bear	returns	to	the	point	P	along	a	meridian	different	from	the	one	along	which	he	left	P,	P	is
necessarily	the	North	Pole.	In	fact	 the	only	other	point	of	 the	globe	in	which	two	meridians	meet	 is	 the
South	Pole,	but	the	bear	could	leave	this	pole	only	in	moving	northward.

(2)	The	bear	could	return	to	the	point	P	along	the	same	meridian	he	left	P	if,	when	walking	one	mile



due	east,	he	describes	a	parallel	circle	exactly	n	times,	where	n	may	be	1,	2,	3	.	.	.	In	this	case	P	is	not	the
North	 Pole,	 but	 a	 point	 on	 a	 parallel	 circle	 very	 close	 to	 the	 South	 Pole	 (the	 perimeter	 of	 which,
expressed	in	miles,	is	slightly	inferior	to	2π	+	1/n).

2.	We	represent	the	globe	as	in	the	solution	of	Problem	1.	The	land	that	Bob	wants	is	bounded	by	two
meridians	and	two	parallel	circles.	Imagine	two	fixed	meridians,	and	a	parallel	circle	moving	away	from
the	equator:	the	arc	on	the	moving	parallel	intercepted	by	the	two	fixed	meridians	is	steadily	shortened.
The	center	of	the	land	that	Bob	wants	should	be	on	the	equator:	he	can	not	get	it	in	the	U.S.

3.	The	least	possible	number	of	dollars	in	a	pocket	is	obviously	0.	The	next	greater	number	is	at	least
1,	 the	next	 greater	 at	 least	 2	 .	 .	 .	 and	 the	number	 in	 the	 last	 (tenth)	pocket	 is	 at	 least	 9.	Therefore,	 the
number	of	dollars	required	is	at	least

0	+	1	+	2	+	3	+	·	·	·	+	9	=	45

Bob	cannot	make	it:	he	has	only	44	dollars.
4.	A	volume	of	999	numbered	pages	needs

9	+	2	×	90	+	3	×	900	=	2889

digits.	If	the	bulky	volume	in	question	has	x	pages

2889	+	4(x	−	999)	=	2989
x	=	1024

This	problem	may	teach	us	that	a	preliminary	estimate	of	the	unknown	may	be	useful	(or	even	necessary,
as	in	the	present	case).

5.	If	_679_	is	divisible	by	72,	it	is	divisible	both	by	8	and	by	9.	If	it	is	divisible	by	8,	the	number	79_
must	be	divisible	by	8	(since	1000	is	divisible	by	8)	and	so	79_	must	be	792:	the	last	faded	digit	is	2.	If
_6792	is	divisible	by	9,	the	sum	of	its	digits	must	be	divisible	by	9	(the	rule	about	“casting	out	nines”)
and	so	the	first	faded	digit	must	be	3.	The	price	of	one	turkey	was	(in	grandfather’s	time)	 367.92	÷	72	=	
5.11.
6.	“A	point	and	a	figure	with	a	center	of	symmetry	(in	the	same	plane)	are	given	in	position.	Find	a

straight	line	that	passes	through	the	given	point	and	bisects	the	area	of	the	given	figure.”	The	required	line
passes,	of	course,	through	the	center	of	symmetry.	See	INVENTOR’S	PARADOX.

7.	In	any	position	the	two	sides	of	the	angle	must	pass	through	two	vertices	of	the	square.	As	long	as
they	pass	through	the	same	pair	of	vertices,	the	angle’s	vertex	moves	along	the	same	arc	of	circle	(by	the
theorem	underlying	the	hint).	Hence	each	of	the	two	loci	required	consists	of	several	arcs	of	circle:	of	4
semicircles	in	the	case	(a)	and	of	8	quarter	circles	in	the	case	(b);	see	Fig.	31.



FIG.	31

8.	The	axis	pierces	the	surface	of	the	cube	in	some	point	which	is	either	a	vertex	of	the	cube	or	lies	on
an	edge	or	in	the	interior	of	a	face.	If	the	axis	passes	through	a	point	of	an	edge	(but	not	through	one	of	its
end-points)	 this	point	must	be	 the	midpoint:	otherwise	 the	edge	could	not	coincide	with	 itself	 after	 the
rotation.	Similarly,	an	axis	piercing	the	interior	of	a	face	must	pass	through	its	center.	Any	axis	must,	of
course,	pass	through	the	center	of	the	cube.	And	so	there	are	three	kinds	of	axes:

(1)	4	axes,	each	through	two	opposite	vertices;	angles	120°,	240°
(2)	6	axes,	each	through	the	mid-points	of	two	opposite	edges;	angle	180°
(3)	3	axes,	each	through	the	center	of	two	opposite	faces;	angles	90°,	180°,	270°.

For	 the	 length	of	an	axis	of	 the	 first	kind	 see	 section	12;	 the	others	are	 still	 easier	 to	compute.	The
desired	average	is

(This	 problem	may	 be	 useful	 in	 preparing	 the	 reader	 for	 the	 study	 of	 crystallography.	 For	 the	 reader
sufficiently	 advanced	 in	 the	 integral	 calculus	 it	may	be	observed	 that	 the	 average	 computed	 is	 a	 fairly
good	approximation	to	the	“average	width”	of	the	cube,	which	is,	in	fact,	3/2	=	1.5.)

9.	 The	 plane	 passing	 through	 one	 edge	 of	 length	 a	 and	 the	 perpendicular	 of	 length	 b	 divides	 the
tetrahedron	into	two	more	accessible	congruent	tetrahedra,	each	with	base	ab/2	and	height	a/2.	Hence	the
required	volume



10.	The	base	of	the	pyramid	is	a	polygon	with	n	sides.	In	the	case	(a)	the	n	lateral	edges	of	the	pyramid
are	equal;	in	the	case	(b)	the	altitudes	(drawn	from	the	apex)	of	its	n	lateral	faces	are	equal.	If	we	draw
the	altitude	of	the	pyramid	and	join	its	foot	to	the	n	vertices	of	the	base	in	the	case	(a),	but	to	the	feet	of
the	altitudes	of	the	n	lateral	faces	in	the	case	(b),	we	obtain,	in	both	cases,	n	right	triangles	of	which	the
altitude	 (of	 the	pyramid)	 is	a	common	side:	 I	 say	 that	 these	n	 right	 triangles	 are	 congruent.	 In	 fact	 the
hypotenuse	[a	lateral	edge	in	the	case	(a),	a	lateral	altitude	in	the	case	(b)]	is	of	the	same	length	in	each,
according	to	the	definitions	laid	down	in	the	proposed	problem;	we	have	just	mentioned	that	another	side
(the	altitude	of	the	pyramid)	and	an	angle	(the	right	angle)	are	common	to	all.	In	the	n	congruent	triangles
the	third	sides	must	also	be	equal;	they	are	drawn	from	the	same	point	(the	foot	of	the	altitude)	in	the	same
plane	(the	base):	they	form	n	radii	of	a	circle	which	is	circumscribed	about,	or	inscribed	into,	the	base	of
the	pyramid,	in	the	cases	(a)	and	(b),	respectively.	[In	the	case	(b)	it	remains	to	show,	however,	that	the	n
radii	mentioned	are	perpendicular	 to	 the	 respective	 sides	of	 the	base;	 this	 follows	 from	a	well-known
theorem	of	solid	geometry	on	projections.]

It	is	most	remarkable	that	a	plane	figure,	the	isosceles	triangle,	may	have	two	different	analogues	 in
solid	geometry.

11.	Observe	that	the	first	equation	is	so	related	to	the	last	as	the	second	is	to	the	third:	the	coefficients
on	the	left-hand	sides	are	the	same,	but	in	opposite	order,	whereas	the	right-hand	sides	are	opposite.	Add
the	first	equation	to	the	last	and	the	second	to	the	third:

		6(x	+	u)	+	10(y	+	v)	=	0,
10(x	+	u)	+	10(y	+	v)	=	0.

This	can	be	regarded	as	a	system	of	two	linear	equations	for	two	unknowns,	namely	for	x	+	u	and	y	+	v,
and	easily	yields

x	+	u	=	0,					y	+	v	=	0.

Substituting	−x	for	u	and	−y	for	v	in	the	first	two	equations	of	the	original	system,	we	find

−4x	+	4y	=				16
			6x	−	2y	=	−	16.

This	is	a	simple	system	which	yields

x	=	−2,					y	=	2,					u	=	2,					v	=	−2

12.	Between	the	start	and	the	meeting	point	each	of	the	friends	traveled	the	same	distance.	(Remember,
distance	=	velocity	×	time.)	We	distinguish	two	parts	in	the	condition:

Bob	traveled	as	much	as	Paul:

ct1	−	ct2	+	ct3	=	ct1	+	pt2	+	pt3,

Paul	traveled	as	much	as	Peter:

ct1	+	pt2	+	pt3	=	pt1	+	pt2	+	ct3.

The	second	equation	yields

(c	−	p)t1	=	(c	−	p)t3.

We	assume,	of	course,	that	the	car	travels	faster	than	a	pedestrian,	c	>	p.	It	follows



t1	=	t3;

that	is,	Peter	walks	just	as	much	as	Paul.	From	the	first	equation,	we	find	that

which	is,	of	course,	also	the	value	for	t1/t2.	Hence	we	obtain	the	answers:

(a)	

(b)	

(c)	In	fact,	0	<	p	<	c.	There	are	two	extreme	cases:
If	p	=	0	(a)	yields	c/3	and	(b)	yields	1/3
If	p	=	c	(a)	yields	c	and	(b)	yields	0.

These	results	are	easy	to	see	without	computation.
13.	The	condition	is	easily	split	into	four	parts	expressed	by	the	four	equations

The	last	equation	yields	a	=	42,	then	the	second	b	=	34.	Adding	the	remaining	two	equations	(to	eliminate
d),	we	obtain

2a	+	b(g−1	+	g)	=	169.

Since	a	and	b	are	already	known,	we	have	here	a	quadratic	equation	for	g.	It	yields

g	=	2,				d	=	−26				or				g	=	1/2,				d	=	25.

The	progressions	are

14.	If	a	and	−a	are	the	roots	having	the	least	absolute	value,	they	will	stand	next	to	each	other	in	the
progression	which	will,	therefore,	be	of	the	form

−3a,	−a,	a,	3a.

Hence	the	left-hand	side	of	the	proposed	equation	must	have	the	form

(x2	−	a2)(x2	−	9a2).



Carrying	out	the	multiplication	and	comparing	coefficients	of	like	powers,	we	obtain	the	system

			10a2	=	3m+	2,
9a4	=	m2.

Elimination	of	a	yields

19m2	−	108m	−	36	=	0.

Hence	m	=	6	or	−6/19.
15.	Let	a,	b,	and	c	denote	the	sides,	the	last	being	the	hypotenuse.	The	three	parts	of	the	condition	are

expressed	by

Observing	that

(a	+	b)2	=	a2	+	b2	+	2ab

we	obtain

(60	−	c)2	=	c2	+	24c.

Hence	c	=	25	and	either	a	=	15,	b	=	20	or	a	=	20,	b	=	15	(no	difference	for	the	triangle).
16.	The	three	parts	of	the	condition	are	expressed	by

The	elimination	of	a	and	b	yields

17.	We	conjecture	that

Following	the	pattern	of	INDUCTION	AND	MATHEMATICAL	INDUCTION,	we	ask:	Does	the	conjectured	formula
remain	true	when	we	pass	 from	the	value	n	 to	 the	next	value	n	+	1?	Along	with	 the	formula	above	we
should	have



Check	this	by	subtracting	from	it	the	former:

which	boils	down	to

and	 this	 last	equation	 is	obviously	 true	 for	n	=	1,	2,	3,	 .	 .	 .	hence,	by	 following	 the	pattern	 referred	 to
above,	we	can	prove	our	conjecture.

18.	In	the	nth	line	the	right-hand	side	seems	to	be	n3	and	the	left-hand	side	a	sum	of	n	terms.	The	final
term	of	this	sum	is	the	mth	odd	number,	or	2m	−	1,	where

see	 INDUCTION	AND	MATHEMATICAL	 INDUCTION,	 4.	Hence	 the	 final	 term	of	 the	 sum	on	 the	 left-hand	 side
should	be

2m	−	1	=	n2	+	n	−	1.

We	can	derive	hence	the	initial	term	of	the	sum	considered	in	two	ways:	going	back	n	−	1	steps	from	the
final	term,	we	find

(n2	+	n	−	1)	−	2(n	−	1)	=	n2	−	n	+	1

whereas,	advancing	one	step	from	the	final	term	of	the	foregoing	line,	we	find

[(n	−	1)2	+	(n	−	1)	−	1]	+	2

which,	after	routine	simplification,	boils	down	to	the	same:	good!	We	assert	therefore	that

(n2	−	n	+	1)	+	(n2	−	n	+	3)	+	·	·	·	+	(n2	+	n	−	1)	=	n3

where	 the	 left-hand	 side	 indicates	 the	 sum	 of	 n	 successive	 terms	 of	 an	 arithmetic	 progression	 the
difference	of	which	is	2.	If	the	reader	knows	the	rule	for	the	sum	of	such	a	progression	(arithmetic	mean
of	the	initial	term	and	the	final	term,	multiplied	by	the	number	of	terms),	he	can	verify	that

and	so	prove	the	assertion.
(The	rule	quoted	can	be	easily	proved	by	a	picture	little	different	from	Fig.	18.)
19.	 The	 length	 of	 the	 perimeter	 of	 the	 regular	 hexagon	with	 side	n	 is	 6n.	 Therefore,	 this	 perimeter

consists	of	6n	boundary	lines	of	length	1	and	contains	6n	vertices.	Therefore,	in	the	transition	from	n	−	1
to	n,	V	increases	by	6n	units,	and	so



V	=	1	+	6(1	+	2	+	3	+	·	·	·	+	n)	=	3n2	+	3n	+	1;

see	INDUCTION	AND	MATHEMATICAL	INDUCTION,	4.	By	3	diagonals	through	its	center	the	hexagon	is	divided
into	6	(large)	equilateral	triangles.	By	inspection	of	one	of	these

T	=	6(1	+	3	+	5	+	·	·	·	+	2n	−	1)	=	6n2

(rule	for	the	sum	of	an	arithmetic	progression,	quoted	in	the	solution	of	Problem	18).	The	T	triangles	have
jointly	3T	sides.	In	this	total	3T	each	internal	line	of	division	of	length	1	is	counted	twice,	whereas	the	6n
lines	along	the	perimeter	of	the	hexagon	are	counted	but	once.	Hence

2L	=	3T	+	6n,					L	=	9n2	+	3n.

(For	 the	more	 advanced	 reader:	 it	 follows	 from	Euler’s	 theorem	on	polyhedra	 that	T	 +	V	 =	L	 +	 1.
Verify	this	relation!)

20.	Here	 is	 a	well-ordered	 array	of	 analogous	problems:	Compute	An,	Bn,	Cn,	Dn	 and	En.	 Each	 of
these	quantities	represents	the	number	of	ways	to	pay	the	amount	of	n	cents;	the	difference	is	in	the	coins
used:

An	only	cents
Bn	cents	and	nickels
Cn	cents,	nickels,	and	dimes
Dn	cents,	nickels,	dimes,	and	quarters
En	cents,	nickels,	dimes,	quarters,	and	half	dollars.

The	symbols	En	(reason	now	clear)	and	An	were	used	before.
All	ways	and	manners	to	pay	the	amount	of	n	cents	with	the	five	kinds	of	coin	are	enumerated	by	En.

We	may,	however,	distinguish	two	possibilities:
First.	No	half	dollar	is	used.	The	number	of	such	ways	to	pay	is	Dn,	by	definition.
Second.	A	half	dollar	(possibly	more)	is	used.	After	the	first	half	dollar	is	laid	on	the	counter,	there

remains	the	amount	of	n	−	50	cents	to	pay,	which	can	be	done	in	exactly	En−50	ways.
We	infer	that

En	=	Dn	+	En−50.

Similarly

	Dn	=	Cn	+	Dn−25,
	Cn	=	Bn	+	Cn−10,
Bn	=	An	+	Bn−5.

A	little	attention	shows	that	these	formulas	remain	valid	if	we	set

A0	=	B0	=	C0	=	D0	=	E0	=	1

(which	obviously	makes	sense)	and	regard	any	one	of	the	quantities	An,	Bn	.	.	.	En	as	equal	to	0	when	its
subscript	happens	to	be	negative.	(For	example,	E25	=	D25,	as	can	be	seen	immediately,	and	this	agrees



with	our	first	formula	since	E25−50	=	E−25	=	0.)
Our	formulas	allow	us	to	compute	the	quantities	considered	recursively,	that	is,	by	going	back	to	lower

values	of	n	or	to	former	letters	of	the	alphabet.	For	example,	we	can	compute	C30	by	simple	addition	if
C20	and	B30	are	already	known.	In	the	table	below	the	initial	row,	headed	by	An,	and	the	initial	column,
headed	by	0,	contain	only	numbers	equal	to	1.	(Why?)	Starting	from	these	initial	numbers,	we	compute	the
others	recursively,	by	simple	additions:	any	other	number	of	the	table	is	equal	either	to	the	number	above
it	or	 to	 the	sum	of	two	numbers:	 the	number	above	it	and	another	at	 the	proper	distance	to	the	left.	For
example,

C30	=	B30	+	C20	=	7	+	9	=	16

The	 computation	 is	 carried	 through	 till	E50	 =	 50:	 you	 can	pay	 50	cents	 in	 exactly	 50	different	 ways.
Carrying	 it	 further,	 the	 reader	 can	 convince	 himself	 that	E100	 =	 292:	 you	 can	 change	 a	 dollar	 in	 292
different	ways.

12	 Except	 Problem	 1	 (widely	 known,	 but	 too	 amusing	 to	 miss)	 all	 the	 problems	 are	 taken	 from	 the	 Stanford	 University	 Competitive
Examinations	 in	 Mathematics	 (there	 are	 a	 few	 minor	 changes).	 Some	 of	 the	 problems	 were	 formerly	 published	 in	 The	 American
Mathematical	Monthly	and/or	The	California	Mathematics	Council	Bulletin.	In	the	latter	periodical	also	some	solutions	were	published	by
the	author;	they	appear	appropriately	rearranged	in	the	sequel.


